Dadas as funções f(x)= 3x-1 e g(x)= x²+2, calcular:
a) g(f(x))
b)f(g(x))
c) f(f(x))
d)g(g(x))
Soluções para a tarefa
Respondido por
2
As funções compostas são: g(f(x)) = 9x² - 6x + 3, f(g(x)) = 3x² + 5, f(f(x)) = 9x - 4 e g(g(x)) = x⁴ + 4x² + 6.
a) Como queremos a função composta g(f(x)), então devemos substituir o x da função g pela função f.
Assim,
g(f(x)) = (3x - 1)² + 2
g(f(x)) = 9x² - 6x + 1 + 2
g(f(x)) = 9x² - 6x + 3.
b) Agora, faremos o contrário: substituiremos o valor de x da função f pela função g:
f(g(x)) = 3(x² + 2) - 1
f(g(x)) = 3x² + 6 - 1
f(g(x)) = 3x² + 5.
c) Para a função composta f(f(x)), substituiremos o x da função f pela própria função f:
f(f(x)) = 3(3x - 1) - 1
f(f(x)) = 9x - 3 - 1
f(f(x)) = 9x - 4.
d) Da mesma forma, substituiremos o x da função g pela própria função g:
g(g(x)) = (x² + 2)² + 2
g(g(x)) = x⁴ + 4x² + 4 + 2
g(g(x)) = x⁴ + 4x² + 6.
Perguntas interessantes
Matemática,
9 meses atrás
Português,
9 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Inglês,
1 ano atrás