dadas as afirmações coloque verdadeiro ou falso 21 é um número racional - 14 é um número inteiro e natural - 0,8 é um número racional sete é um número natural e racional
Soluções para a tarefa
Conjunto dos Números Naturais (N)
O conjunto dos números naturais é representado por N. Ele reúne os números que usamos para contar (incluindo o zero) e é infinito.
Subconjuntos dos Números Naturais
N* = {1, 2, 3, 4, 5..., n, ...} ou N* = N – {0}: conjuntos dos números naturais não-nulos, ou seja, sem o zero.
Np = {0, 2, 4, 6, 8..., 2n, ...}, em que n ∈ N: conjunto dos números naturais pares.
Ni = {1, 3, 5, 7, 9..., 2n+1, ...}, em que n ∈ N: conjunto dos números naturais ímpares.
P = {2, 3, 5, 7, 11, 13, ...}: conjunto dos números naturais primos.
Conjunto dos Números Inteiros (Z)
O conjunto dos números inteiros é representado por Z. Reúne todos os elementos dos números naturais (N) e seus opostos. Assim, conclui-se que N é um subconjunto de Z (N ⊂ Z):
Subconjuntos dos Números Inteiros
Z* = {..., –4, –3, –2, –1, 1, 2, 3, 4, ...} ou Z* = Z – {0}: conjuntos dos números inteiros não-nulos, ou seja, sem o zero.
Z+ = {0, 1, 2, 3, 4, 5, ...}: conjunto dos números inteiros e não-negativos. Note que Z+ = N.
Z*+ = {1, 2, 3, 4, 5, ...}: conjunto dos números inteiros positivos e sem o zero.
Z – = {..., –5, –4, –3, –2, –1, 0}: conjunto dos números inteiros não-positivos.
Z*– = {..., –5, –4, –3, –2, –1}: conjunto dos números inteiros negativos e sem o zero.
Conjunto dos Números Racionais (Q)
O conjunto dos números racionais é representado por Q. Reúne todos os números que podem ser escritos na forma p/q, sendo p e q números inteiros e q≠0.
Q = {0, ±1, ±1/2, ±1/3, ..., ±2, ±2/3, ±2/5, ..., ±3, ±3/2, ±3/4, ...}
Note que todo número inteiro é também número racional. Assim, Z é um subconjunto de Q.
Subconjuntos dos Números Racionais
Q* = subconjunto dos números racionais não-nulos, formado pelos números racionais sem o zero.
Q+ = subconjunto dos números racionais não-negativos, formado pelos números racionais positivos e o zero.
Q*+ = subconjunto dos números racionais positivos, formado pelos números racionais positivos, sem o zero.
Q– = subconjunto dos números racionais não-positivos, formado pelos números racionais negativos e o zero.
Q*– = subconjunto dos números racionais negativos, formado números racionais negativos, sem o zero.
Conjunto dos Números Irracionais (I)
O conjunto dos números irracionais é representado por I. Reúne os números decimais não exatos com uma representação infinita e não periódica, por exemplo: 3,141592... ou 1,203040...
Importante ressaltar que as dízimas periódicas são números racionais e não irracionais. Elas são números decimais que se repetem após a vírgula, por exemplo: 1,3333333...
Conjunto dos Números Reais (R)
O conjunto dos números reais é representado por R. Esse conjunto é formado pelos números racionais (Q) e irracionais (I). Assim, temos que R = Q ∪ I. Além disso, N, Z, Q e I são subconjuntos de R.
Mas, observe que se um número real é racional, ele não pode ser também irracional. Da mesma maneira, se ele é irracional, não é racional.
Subconjuntos dos Números Reais
R*= {x ∈ R│x ≠ 0}: conjunto dos números reais não-nulos.
R+ = {x ∈ R│x ≥ 0}: conjunto dos números reais não-negativos.
R*+ = {x ∈ R│x > 0}: conjunto dos números reais positivos.
R– = {x ∈ R│x ≤ 0}: conjunto dos números reais não-positivos.
R*– = {x ∈ R│x < 0}: conjunto dos números reais negativos.
Intervalos Numéricos
Há ainda um subconjunto relacionado com os números reais que são chamados de intervalos. Sejam a e b números reais e a < b, temos os seguintes intervalos reais:
Intervalo aberto de extremos: ]a,b[ = {x ∈ R│a < x < b}
Intervalo aberto
Intervalo fechado de extremos: [a,b] = {x ∈ R│a ≤ x ≤ b}
Intervalo fechado
Intervalo aberto à direta (ou fechado à esquerda) de extremos: [a,b[ = {x ∈ R│a ≤ x < b}
Intervalo aberto à direita
Intervalo aberto à esquerda (ou fechado à direita) de extremos: ]a,b] = {x ∈ R│a < x ≤ b}
Intervalo aberto à esquerda
Propriedades dos Conjuntos Numéricos
Diagrama de conjuntos numéricos
Diagrama dos conjuntos numéricos
Resposta:
Todas as afirmações são verdadeiras.
Explicação passo-a-passo:
21 pode ser escrito na forma de fração.
63/3, por exemplo.
14 é um número natural e, portanto, também é inteiro já que os números naturais pertencem aos números inteiros.
0,8 é racional pois tem um número finito de casas decimais, então ele pode ser escrito na forma de fração.
8/10, por exemplo
Por fim, 7 sete é um número natural, e todo número natural é também racional, pois pode ser escrito em fração.
21/3, por exemplo
Espero ter ajudado
Bons estudos!