Matemática, perguntado por Larecocielo, 1 ano atrás

Dada as matrizes
A =   \left[\begin{array}{ccc}2&3&7\\5&6&0\end{array}\right] e B =   \left[\begin{array}{ccc}0&4\\1&-1\\3&2\end{array}\right]
Obtenha as matrizes:
a)  \frac{1}{3} A
b) 2B
c) 3A + 2 B^{t}
d) A*B

Soluções para a tarefa

Respondido por fagnerdi
2
Letra a :

  \frac{1}{3}*  \left[\begin{array}{ccc}2&3&7\\5&6&0\\\end{array}\right] =\left[\begin{array}{ccc}2*\frac{1}{3}&3*\frac{1}{3}&7*\frac{1}{3}\\5*\frac{1}{3}&6*\frac{1}{3}&0*\frac{1}{3}\\\end{array}\right]=\left[\begin{array}{ccc}\frac{2}{3}&1&\frac{7}{3}\\\frac{5}{3}&2&0\\\end{array}\right]

Letra b:

2*  \left[\begin{array}{cc}0&4&\\1&-1&\\3&2&\end{array}\right] =  \left[\begin{array}{cc}0*2&4*2&\\1*2&-1*2&\\3*2&2*2&\end{array}\right]=\left[\begin{array}{cc}0&8&\\2&-2&\\6&4&\end{array}\right]

Letra c:


Perguntas interessantes