Dada as equações das circunferências secantes x²+y²-40x+40y+700=0 e x²+y²-120x-40y+1500=0, onde A e B são os pontos de intersecção dessas circunferências, determine, aproximadamente, a distância entre os pontos A e B.
Soluções para a tarefa
Respondido por
2
Observe a figura em anexo.
Colocando as equações na forma reduzida para obtermos os raios e as coordenadas dos centros:
![\bullet~~\gamma_{1}:~~x^2+y^2-40x+40y+700=0\\\\ \gamma_{1}:~~x^2-40x+y^2+40y=-700\\\\ \gamma_{1}:~~x^2-40x+400+y^2+40y+400=-700+400+400\\\\ \gamma_{1}:~~(x^2-40x+400)+(y^2+40y+400)=100\\\\ \boxed{\begin{array}{c} \gamma_{1}:~~(x-20)^2+(y+20)^2=10^2 \end{array}} \bullet~~\gamma_{1}:~~x^2+y^2-40x+40y+700=0\\\\ \gamma_{1}:~~x^2-40x+y^2+40y=-700\\\\ \gamma_{1}:~~x^2-40x+400+y^2+40y+400=-700+400+400\\\\ \gamma_{1}:~~(x^2-40x+400)+(y^2+40y+400)=100\\\\ \boxed{\begin{array}{c} \gamma_{1}:~~(x-20)^2+(y+20)^2=10^2 \end{array}}](https://tex.z-dn.net/?f=%5Cbullet%7E%7E%5Cgamma_%7B1%7D%3A%7E%7Ex%5E2%2By%5E2-40x%2B40y%2B700%3D0%5C%5C%5C%5C+%5Cgamma_%7B1%7D%3A%7E%7Ex%5E2-40x%2By%5E2%2B40y%3D-700%5C%5C%5C%5C+%5Cgamma_%7B1%7D%3A%7E%7Ex%5E2-40x%2B400%2By%5E2%2B40y%2B400%3D-700%2B400%2B400%5C%5C%5C%5C+%5Cgamma_%7B1%7D%3A%7E%7E%28x%5E2-40x%2B400%29%2B%28y%5E2%2B40y%2B400%29%3D100%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Cgamma_%7B1%7D%3A%7E%7E%28x-20%29%5E2%2B%28y%2B20%29%5E2%3D10%5E2+%5Cend%7Barray%7D%7D)
é uma circunferência com centro em
e raio ![R_{1}=10. R_{1}=10.](https://tex.z-dn.net/?f=R_%7B1%7D%3D10.)
![\bullet~~\gamma_{2}:~~x^2+y^2-120x-40y+1\,500=0\\\\ \gamma_{2}:~~x^2-120x+y^2-40y=-1\,500\\\\ \gamma_{2}:~~x^2-120x+3\,600+y^2-40y+400=-1\,500+3\,600+400\\\\ \gamma_{2}:~~(x^2-120x+3\,600)+(y^2-40y+400)=2\,500\\\\ \boxed{\begin{array}{c} \gamma_{2}:~~(x-60)^2+(y-20)^2=50^2 \end{array}} \bullet~~\gamma_{2}:~~x^2+y^2-120x-40y+1\,500=0\\\\ \gamma_{2}:~~x^2-120x+y^2-40y=-1\,500\\\\ \gamma_{2}:~~x^2-120x+3\,600+y^2-40y+400=-1\,500+3\,600+400\\\\ \gamma_{2}:~~(x^2-120x+3\,600)+(y^2-40y+400)=2\,500\\\\ \boxed{\begin{array}{c} \gamma_{2}:~~(x-60)^2+(y-20)^2=50^2 \end{array}}](https://tex.z-dn.net/?f=%5Cbullet%7E%7E%5Cgamma_%7B2%7D%3A%7E%7Ex%5E2%2By%5E2-120x-40y%2B1%5C%2C500%3D0%5C%5C%5C%5C+%5Cgamma_%7B2%7D%3A%7E%7Ex%5E2-120x%2By%5E2-40y%3D-1%5C%2C500%5C%5C%5C%5C+%5Cgamma_%7B2%7D%3A%7E%7Ex%5E2-120x%2B3%5C%2C600%2By%5E2-40y%2B400%3D-1%5C%2C500%2B3%5C%2C600%2B400%5C%5C%5C%5C+%5Cgamma_%7B2%7D%3A%7E%7E%28x%5E2-120x%2B3%5C%2C600%29%2B%28y%5E2-40y%2B400%29%3D2%5C%2C500%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+%5Cgamma_%7B2%7D%3A%7E%7E%28x-60%29%5E2%2B%28y-20%29%5E2%3D50%5E2+%5Cend%7Barray%7D%7D)
é uma circunferência com centro em
e raio ![R_{2}=50. R_{2}=50.](https://tex.z-dn.net/?f=R_%7B2%7D%3D50.)
_____________________
Seja
a distância entre os centros
e
das duas circunferências:
![d=\|(60,\;20)-(20,\;-20)\|\\\\ d=\|(60-20,\;20-(-20))\|\\\\ d=\|(40,\;40)\|\\\\ d=\sqrt{40^2+40^2}\\\\ d=\sqrt{2\cdot 40^2}\\\\ d=40\sqrt{2}\mathrm{~u.c.} d=\|(60,\;20)-(20,\;-20)\|\\\\ d=\|(60-20,\;20-(-20))\|\\\\ d=\|(40,\;40)\|\\\\ d=\sqrt{40^2+40^2}\\\\ d=\sqrt{2\cdot 40^2}\\\\ d=40\sqrt{2}\mathrm{~u.c.}](https://tex.z-dn.net/?f=d%3D%5C%7C%2860%2C%5C%3B20%29-%2820%2C%5C%3B-20%29%5C%7C%5C%5C%5C%5C+d%3D%5C%7C%2860-20%2C%5C%3B20-%28-20%29%29%5C%7C%5C%5C%5C%5C+d%3D%5C%7C%2840%2C%5C%3B40%29%5C%7C%5C%5C%5C%5C+d%3D%5Csqrt%7B40%5E2%2B40%5E2%7D%5C%5C%5C%5C+d%3D%5Csqrt%7B2%5Ccdot+40%5E2%7D%5C%5C%5C%5C+d%3D40%5Csqrt%7B2%7D%5Cmathrm%7B%7Eu.c.%7D)
_________________________
Sendo
a distância procurada, aplicando a Lei dos Cossenos ao triângulo
temos que
![R_2^2=R_1^2+d^2-2R_1\cdot d\cdot \cos \theta\\\\ 2R_1\cdot d\cdot \cos \theta=R_{1}^2+d^2-R_2^2\\\\ \cos \theta=\dfrac{R_{1}^2+d^2-R_2^2}{2\,R_1\cdot d}\\\\\\ \cos \theta=\dfrac{10^2+(40\sqrt{2})^2-50^2}{2\cdot 10\cdot 40\sqrt{2}}\\\\\\ \cos \theta=\dfrac{100+3\,200-2\,500}{800\sqrt{2}}\\\\\\ \cos \theta=\dfrac{800}{800\sqrt{2}}\\\\\\ \cos \theta=\dfrac{1}{\sqrt{2}}\\\\\\ \cos \theta=\dfrac{\sqrt{2}}{2} R_2^2=R_1^2+d^2-2R_1\cdot d\cdot \cos \theta\\\\ 2R_1\cdot d\cdot \cos \theta=R_{1}^2+d^2-R_2^2\\\\ \cos \theta=\dfrac{R_{1}^2+d^2-R_2^2}{2\,R_1\cdot d}\\\\\\ \cos \theta=\dfrac{10^2+(40\sqrt{2})^2-50^2}{2\cdot 10\cdot 40\sqrt{2}}\\\\\\ \cos \theta=\dfrac{100+3\,200-2\,500}{800\sqrt{2}}\\\\\\ \cos \theta=\dfrac{800}{800\sqrt{2}}\\\\\\ \cos \theta=\dfrac{1}{\sqrt{2}}\\\\\\ \cos \theta=\dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=R_2%5E2%3DR_1%5E2%2Bd%5E2-2R_1%5Ccdot+d%5Ccdot+%5Ccos+%5Ctheta%5C%5C%5C%5C+2R_1%5Ccdot+d%5Ccdot+%5Ccos+%5Ctheta%3DR_%7B1%7D%5E2%2Bd%5E2-R_2%5E2%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7BR_%7B1%7D%5E2%2Bd%5E2-R_2%5E2%7D%7B2%5C%2CR_1%5Ccdot+d%7D%5C%5C%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7B10%5E2%2B%2840%5Csqrt%7B2%7D%29%5E2-50%5E2%7D%7B2%5Ccdot+10%5Ccdot+40%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7B100%2B3%5C%2C200-2%5C%2C500%7D%7B800%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7B800%7D%7B800%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5C%5C+%5Ccos+%5Ctheta%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
Como
é ângulo interno de um triângulo, temos
E dessa forma,
![\theta=\dfrac{\pi}{4}~~\Rightarrow~~\mathrm{sen\,}\theta=\dfrac{\sqrt{2}}{2} \theta=\dfrac{\pi}{4}~~\Rightarrow~~\mathrm{sen\,}\theta=\dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Ctheta%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%7E%7E%5CRightarrow%7E%7E%5Cmathrm%7Bsen%5C%2C%7D%5Ctheta%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
____________________________
Finalmente, temos que
![\dfrac{x}{2}=R_1\cdot \mathrm{sen\,}\theta\\\\\\ x=2\,R_1\cdot \mathrm{sen\,}\theta\\\\ x=2\cdot 10\cdot \dfrac{\sqrt{2}}{2}\\\\\\ x=10\sqrt{2}\\\\ \boxed{\begin{array}{c} x\approx 14,1~\mathrm{u.c.} \end{array}} \dfrac{x}{2}=R_1\cdot \mathrm{sen\,}\theta\\\\\\ x=2\,R_1\cdot \mathrm{sen\,}\theta\\\\ x=2\cdot 10\cdot \dfrac{\sqrt{2}}{2}\\\\\\ x=10\sqrt{2}\\\\ \boxed{\begin{array}{c} x\approx 14,1~\mathrm{u.c.} \end{array}}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B2%7D%3DR_1%5Ccdot+%5Cmathrm%7Bsen%5C%2C%7D%5Ctheta%5C%5C%5C%5C%5C%5C+x%3D2%5C%2CR_1%5Ccdot+%5Cmathrm%7Bsen%5C%2C%7D%5Ctheta%5C%5C%5C%5C+x%3D2%5Ccdot+10%5Ccdot+%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%5C%5C%5C%5C+x%3D10%5Csqrt%7B2%7D%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+x%5Capprox+14%2C1%7E%5Cmathrm%7Bu.c.%7D+%5Cend%7Barray%7D%7D)
Colocando as equações na forma reduzida para obtermos os raios e as coordenadas dos centros:
_____________________
Seja
_________________________
Sendo
Como
____________________________
Finalmente, temos que
Anexos:
![](https://pt-static.z-dn.net/files/d42/d2944fd3d357e20dc61864b577f8638b.png)
Perguntas interessantes
Lógica,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás