Matemática, perguntado por leudy44, 1 ano atrás

dada a reta L de equação 4 × + 3y -1=0 e a circunferência de equação x2y2 + 6x -8 =0 qual a posição relativa de l em relação a

Soluções para a tarefa

Respondido por KobayashiOliver
0
Boa noite

l: 4x  + 3y - 1 = 0 \\  \alpha:  {x}^{2}  +  {y}^{2}  + 6x - 8 = 0
Isolando o y da equação da reta:
y =  \frac{1 - 4x}{3}
aplicando essa última equação na segunda:
 {x}^{2}  +  {( \frac{ 1 - 4x}{3} )}^{2}  + 6x - 8 = 0 \\  {x}^{2}+ \frac{1 - 8x + 16 {x}^{2} }{9}  + 6x - 8 = 0 \\ 9 {x}^{2}  + 1 - 8x + 16 {x}^{2}  + 54x - 72 = 0 \\ 25 {x}^{2}  + 46x - 71 = 0 \\  \\ Δ =  {46}^{2}   +  4 \times 25 \times 71 \\ Δ > 0
O discriminante é maior do que zero, logo, há suas possíveis soluções. Portanto, a reta é secante à circunferência
Perguntas interessantes