Matemática, perguntado por gabrielfellipe6657, 10 meses atrás

Dada a PA ( 1 , 5 , 9 , ... ). O seu décimo termo é?​

Soluções para a tarefa

Respondido por Usuário anônimo
0

Resposta:

O décimo termo é 37.

Explicação passo-a-passo:

Os números mostrados no enunciado tem uma sequência de 4 em 4 números.

Espero ter ajudado!!! ;-)

Respondido por viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (1, 5, 9,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:1

c)décimo termo (a₁₀): ?

d)número de termos (n): 10 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 10ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do décimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos de crescem e, para que isto aconteça, necessariamente se deve somar um valor constante negativo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 2: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 5 - 1 ⇒

r = 4    (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o décimo termo:

an = a₁ + (n - 1) . r ⇒

a₁₀ = a₁ + (n - 1) . (r) ⇒

a₁₀ = 1 + (10 - 1) . (4) ⇒

a₁₀ = 1 + (9) . (4) ⇒         (Veja a Observação 3.)

a₁₀ = 1 + 36 ⇒

a₁₀ = 37

Observação 3:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O décimo termo da P.A.(1, 5, 9, ...) é 37.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₁₀ = 37 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o décimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₁₀ = a₁ + (n - 1) . (r) ⇒

37 = a₁ + (10 - 1) . (4) ⇒

37 = a₁ + (9) . (4) ⇒

37 = a₁ + 36 ⇒  (Passa-se 36 ao 1º membro e altera-se o sinal.)

37 - 36 = a₁ ⇒  

1 = a₁ ⇔            (O símbolo ⇔ significa "equivale a".)

a₁ = 1                 (Provado que a₁₀ = 37.)

→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/10721299

https://brainly.com.br/tarefa/2403541

https://brainly.com.br/tarefa/27380724

https://brainly.com.br/tarefa/4097297

brainly.com.br/tarefa/25376495

brainly.com.br/tarefa/320073

brainly.com.br/tarefa/12882235

brainly.com.br/tarefa/4603494

brainly.com.br/tarefa/27238337

brainly.com.br/tarefa/6758102

Perguntas interessantes