Matemática, perguntado por reginaldobr8585, 1 ano atrás

Dada a função quadrática abaixo, determine:f(x) = -x2 + 6x - 9a. Se a concavidade da parábola definida pela função é voltada para baixou para cima.b. O zeros da função. c. O vértice da parábola definida pela função. d. A intersecção com o eixo x. e. A intersecção com o eixo y. f. O eixo de simetria. g. Imagem de f Im(f).h. Esboço do gráfico

Soluções para a tarefa

Respondido por Usuário anônimo
0
f(x) = -x² + 6x - 9= ax²+bx+c  ...a=-1,b=6,c=-9

a=-1<0 ...concavidade para baixo, a parábola tem ponto de máximo

Δ=b²-4*a*c=36-36=0 ..Tem duas raízes iguais e REAIS

x'=x''=[-6+
√(36-36)]/(-2)=-6/(-2)=3

Vértice=(vx,vy)
vx=-b/2a=-6/(-2)=3
vy=-
Δ/4a=-0/(-4)=0 ..Vértice=(3,0)  ...ponto de máximo

intersecção com o eixo y , ocorre quando x=0.
f(0) = -0² + 6*0 - 9= -9   ..ponto(0,-9)


Perguntas interessantes