Dada a função f(x) = x² +4x + 4: determine a)o ponto em que a parabola intercepta o eixo y b)a concavidade da parábola c)os zeros da função d)ovérticeda parábola
Soluções para a tarefa
Respondido por
1
entao y=0
a>0 entao = U pra cima
Delta = 0 , entao só ha um x real , no caso -2
Xv= -2
Yv= 0
a>0 entao = U pra cima
Delta = 0 , entao só ha um x real , no caso -2
Xv= -2
Yv= 0
Respondido por
8
a) Ponto 0, onde intercepta o eixo y, então f(0) x² + 4x + 4
f(0) = 0² + 4.0 + 4
f(0) = 4
b) para descobrir a concavidade, se a>0 é para cima, na equação em questão, a = x², portanto, a = 1, sendo assim, a>0, a concavidade é positiva (barriga para baixo)
c) os zeros da função é onde a parábola intercepta o eixo x, como essa parábola tem apenas 1 raiz real, a parábola intercepta o eixo x em apenas um ponto,
Utilizar o Baskara
Δ = 4² - 4.4.1
Δ = 16 - 16
Δ = 0
Como Δ = 0, ambos x terão o mesmo valor, portanto
x = -4/2.1
x = -4/2
x = -2
x = -2
(-2,0)
Tinha um erro ali na alternativa a), ja ajeitei =D
f(0) = 0² + 4.0 + 4
f(0) = 4
b) para descobrir a concavidade, se a>0 é para cima, na equação em questão, a = x², portanto, a = 1, sendo assim, a>0, a concavidade é positiva (barriga para baixo)
c) os zeros da função é onde a parábola intercepta o eixo x, como essa parábola tem apenas 1 raiz real, a parábola intercepta o eixo x em apenas um ponto,
Utilizar o Baskara
Δ = 4² - 4.4.1
Δ = 16 - 16
Δ = 0
Como Δ = 0, ambos x terão o mesmo valor, portanto
x = -4/2.1
x = -4/2
x = -2
x = -2
(-2,0)
Tinha um erro ali na alternativa a), ja ajeitei =D
Perguntas interessantes