Dada a função f(x) = a^x (a elevado a x), com a>0 (a maior que zero) e a≠0 (a diferente de 0) , JUSTIFIQUE porquê essas questões são verdadeiras:
a) O domínio de f é R
b) se a = 2 então f(-1) = 1/2
c) o gráfico de f passa pelo ponto P(0,1)
Soluções para a tarefa
Respondido por
8
a) f(x)=a^x , com a>0 (a maior que zero) e a≠0 .
É uma função que pertence aos números reais pois não existe nenhum número que aplicado a ela que a faça não pertence a esse conjunto assim, você poderia escrever em uma formulação matemática:
∀ x ∊ R E f(x) ∊ R (Ou, para todo x que pertence aos números reais existe um f(x) que pertence aos números reais).
**Só uma observação: se a < 0, f(x) ∊ C (conjunto complexo) , pois imagine, por exemplo um x=1/2 (raiz quadrada), teríamos a função f(1/2) = (a)^(1/2), não existe no conjunto dos números reais raiz de número negativo apenas no conjunto dos números complexos (C) , nesse caso poderíamos dizer que f(x) ∉ R , ou
∀ x ∊ R ∄ f(x) ∊ R.
b) f(x)=a^x , a=2 , f(x)=2^(x), mas o valor de x=-1 , então f(-1)=2^(-1) = 1/2
** Observe que na potenciação, se a sua potencia for negativa, seu valor será invertido. Exemplo: 5^(-2) = (1/5) ^ (2) = 1/25
c) O gráfico passa por esse ponto, pois para toda potencia ( cuja a base é diferente de zero ) se o expoente for zero o valor da potencia será 1.
Exemplo: 2^0 = 1 , 1100000002^0 = 1 , 5^0 = 1 .
*Observação cuidado com a generalização 0^0 = ?? é uma indeterminação pois não existe um valor definido, o resultado para essa indeterminação pode ser qualquer número real.
** Vou tentar te convencer que a^0 = 1 , onde a é qualquer número real diferente de zero.
pense na seguinte expressão:
a^n / a^n = 1 , concorda comigo que um número dividido por ele mesmo o resultado é igual a 1 ! (lembre-se que 0/0 não se aplica pois é uma indeterminação, no ensino superior você terá alguns detalhes a mais).
Então aplicando a regra da potenciação temos:
a^(n-n) = 1, assim : a^0 = 1 .
É uma função que pertence aos números reais pois não existe nenhum número que aplicado a ela que a faça não pertence a esse conjunto assim, você poderia escrever em uma formulação matemática:
∀ x ∊ R E f(x) ∊ R (Ou, para todo x que pertence aos números reais existe um f(x) que pertence aos números reais).
**Só uma observação: se a < 0, f(x) ∊ C (conjunto complexo) , pois imagine, por exemplo um x=1/2 (raiz quadrada), teríamos a função f(1/2) = (a)^(1/2), não existe no conjunto dos números reais raiz de número negativo apenas no conjunto dos números complexos (C) , nesse caso poderíamos dizer que f(x) ∉ R , ou
∀ x ∊ R ∄ f(x) ∊ R.
b) f(x)=a^x , a=2 , f(x)=2^(x), mas o valor de x=-1 , então f(-1)=2^(-1) = 1/2
** Observe que na potenciação, se a sua potencia for negativa, seu valor será invertido. Exemplo: 5^(-2) = (1/5) ^ (2) = 1/25
c) O gráfico passa por esse ponto, pois para toda potencia ( cuja a base é diferente de zero ) se o expoente for zero o valor da potencia será 1.
Exemplo: 2^0 = 1 , 1100000002^0 = 1 , 5^0 = 1 .
*Observação cuidado com a generalização 0^0 = ?? é uma indeterminação pois não existe um valor definido, o resultado para essa indeterminação pode ser qualquer número real.
** Vou tentar te convencer que a^0 = 1 , onde a é qualquer número real diferente de zero.
pense na seguinte expressão:
a^n / a^n = 1 , concorda comigo que um número dividido por ele mesmo o resultado é igual a 1 ! (lembre-se que 0/0 não se aplica pois é uma indeterminação, no ensino superior você terá alguns detalhes a mais).
Então aplicando a regra da potenciação temos:
a^(n-n) = 1, assim : a^0 = 1 .
Respondido por
1
Qual é o cálculo dessa função??
Anexos:
Perguntas interessantes
Matemática,
10 meses atrás
Geografia,
10 meses atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás