Matemática, perguntado por IsaMa15, 5 meses atrás

dada a função, determine o K para: f(x)=x³+Kx²-2x+5 sendo : f(2) = f(0)​

Soluções para a tarefa

Respondido por SocratesA
6

k = -1\\

Calculando-se f(0):\\\\f(x)=x^3+Kx^2-2x+5\\\\f(0) = 0^3 + k.0^2 - 2.0 + 5\\\\f(0) = 5\\\\

Calculando-se f(2):\\

f(x)=x^3+Kx^2-2x+5\\\\f(2) = 2^3 +k.2^2 - 2.2 + 5\\\\f(2) = 8 + k.4 - 4 + 5\\\\f(2) = 4k + 9\\\\

Igualando-se f(0) e f(2)  para obter o valor de k

f(2) = f(0)\\\\4k + 9 = 5\\\\4k = 5 - 9\\\\4k = -4\\\\j = -4 / 4\\\\k = -1\\\\

Veja mais em:

https://brainly.com.br/tarefa/46839167

https://brainly.com.br/tarefa/58428

Anexos:
Respondido por solkarped
7

✅ Após resolver os cálculos, concluímos que o valor do parâmetro "k" de modo que "f(2) = f(0)" é:

                                 \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf k = -1\:\:\:}}\end{gathered}$}

Seja a função cúbica:

                    \Large\displaystyle\text{$\begin{gathered}\tt f(x) = x^{3} + kx^{2} - 2x + 5\end{gathered}$}

Se estamos querendo calcular o valor de "k" de modo que "f(2) = f(0)", então, temos:

                                     \Large\displaystyle\text{$\begin{gathered}\tt f(2) = f(0)\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\tt 2^{3} + k\cdot2^{2} - 2\cdot2 + 5 = 0^{3} + k\cdot0^{2} - 2\cdot0 + 5\end{gathered}$}

              \Large\displaystyle\text{$\begin{gathered}\tt 8 + 4k - 4 + 5 = 0 + 0 - 0 + 5\end{gathered}$}

                                         \Large\displaystyle\text{$\begin{gathered}\tt 4k = 5 - 5 + 4 - 8\end{gathered}$}

                                         \Large\displaystyle\text{$\begin{gathered}\tt 4k = -4\end{gathered}$}

                                             \Large\displaystyle\text{$\begin{gathered}\tt k = -\frac{4}{4}\end{gathered}$}

                                             \Large\displaystyle\text{$\begin{gathered}\tt k = -1\end{gathered}$}

✅Portanto, o valor de "k" é:

                                             \Large\displaystyle\text{$\begin{gathered}\tt k = -1\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/51929974
  2. https://brainly.com.br/tarefa/52050489
  3. https://brainly.com.br/tarefa/52052050
  4. https://brainly.com.br/tarefa/52067282
  5. https://brainly.com.br/tarefa/52069730
  6. https://brainly.com.br/tarefa/52071178
  7. https://brainly.com.br/tarefa/52101100
  8. https://brainly.com.br/tarefa/33525469
  9. https://brainly.com.br/tarefa/52179042
  10. https://brainly.com.br/tarefa/52219860
  11. https://brainly.com.br/tarefa/52265286
  12. https://brainly.com.br/tarefa/52310956
Anexos:
Perguntas interessantes