Matemática, perguntado por Victorinabd, 1 ano atrás

Dada a expressão algébrica -b+ a raiz quadrada de b elevado a 2 - 4ac. O valor numérico para a = 2, b = – 9 e c = – 5 é:

Soluções para a tarefa

Respondido por Usuário anônimo
3
a=2  b=-9   c=-5

-b+ \sqrt{b^2-4ac} =-(-9)+ \sqrt{(-9)^2-4.2.(-5)} =9+ \sqrt{81+40} = \\  \\ =9+ \sqrt{121} =9+11=20
Respondido por Usuário anônimo
3
Sobre a expressão do exercício:
             ________
= - b + √b² - 4ac
                 _____________
= - (-9) + √(-9)² - 4.2.(-5)
            ________
= 9 + √81 + 40

= 9 + √121

= 9 + 11

= 20

Resp.: 20

*************************************************
Complemento (não faz parte do exercício):

Caso seja e equação do 2º grau:


2x² - 9x - 5 = 0

a = 2; b = - 9; c = - 5

Δ = b² - 4ac
Δ = (-9)² - 4.2.(-5)
Δ = 81 - 8.(-5)
Δ = 81 + 40
Δ = 121
√Δ = 11

x  =   - b +/- √Δ     =   - (-9) +/- √121
       ----------------      ----------------------
              2a                         2.2

x = 9 + 11          20
      ---------  =  ---------  =  5
         4                4

x = 9 - 11         - 2   (:2)       - 1
      ---------  =  ------        =  ------
          4              4   (:2)         2

R.: x = 5 e x =  -1/2
Perguntas interessantes