d(x)= raiz de x2- 1. Calcule a expressão pela regra da cadeia
Soluções para a tarefa
Respondido por
0
Caso esteja pelo app, experimente abrir esta resposta pelo navegador: https://brainly.com.br/tarefa/8333592
—————————
Calcular a derivada da função
![\mathsf{y=\sqrt{x^2-1}}\\\\ \mathsf{y=\big(x^2-1)^{1/2}} \mathsf{y=\sqrt{x^2-1}}\\\\ \mathsf{y=\big(x^2-1)^{1/2}}](https://tex.z-dn.net/?f=%5Cmathsf%7By%3D%5Csqrt%7Bx%5E2-1%7D%7D%5C%5C%5C%5C+%5Cmathsf%7By%3D%5Cbig%28x%5E2-1%29%5E%7B1%2F2%7D%7D)
Olhando para y como uma função composta:
![\left\{\! \begin{array}{l} \mathsf{y=u^{1/2}}\\\\\mathsf{u=x^2-1} \end{array} \right. \left\{\! \begin{array}{l} \mathsf{y=u^{1/2}}\\\\\mathsf{u=x^2-1} \end{array} \right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5C%21+%5Cbegin%7Barray%7D%7Bl%7D+%5Cmathsf%7By%3Du%5E%7B1%2F2%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bu%3Dx%5E2-1%7D+%5Cend%7Barray%7D+%5Cright.)
usamos a Regra da Cadeia para derivar:
![\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^{1/2})\cdot \dfrac{d}{dx}(x^2-1)} \mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^{1/2})\cdot \dfrac{d}{dx}(x^2-1)}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bdy%7D%7Bdu%7D%5Ccdot+%5Cdfrac%7Bdu%7D%7Bdx%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdu%7D%28u%5E%7B1%2F2%7D%29%5Ccdot+%5Cdfrac%7Bd%7D%7Bdx%7D%28x%5E2-1%29%7D)
Agora, use a Regra da Potência:
![\mathsf{\dfrac{dy}{dx}=\dfrac{1}{2}\,u^{(1/2)-1}\cdot 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{2}\,u^{-1/2}\cdot 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{\diagup\!\!\!\! 2}\cdot \dfrac{1}{u^{1/2}}\cdot \diagup\!\!\!\! 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{x}{u^{1/2}}} \mathsf{\dfrac{dy}{dx}=\dfrac{1}{2}\,u^{(1/2)-1}\cdot 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{2}\,u^{-1/2}\cdot 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{\diagup\!\!\!\! 2}\cdot \dfrac{1}{u^{1/2}}\cdot \diagup\!\!\!\! 2x}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{x}{u^{1/2}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5C%2Cu%5E%7B%281%2F2%29-1%7D%5Ccdot+2x%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5C%2Cu%5E%7B-1%2F2%7D%5Ccdot+2x%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%5Ccdot+%5Cdfrac%7B1%7D%7Bu%5E%7B1%2F2%7D%7D%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2x%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bx%7D%7Bu%5E%7B1%2F2%7D%7D%7D)
Agora, substitua de volta para a variável x e você obtém
![\mathsf{\dfrac{dy}{dx}=\dfrac{x}{(x^2-1)^{1/2}}} \mathsf{\dfrac{dy}{dx}=\dfrac{x}{(x^2-1)^{1/2}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bx%7D%7B%28x%5E2-1%29%5E%7B1%2F2%7D%7D%7D)
✔
Bons estudos! :-)
Tags: derivada função composta regra da cadeia raiz quadrada polinômio quadrático cálculo diferencial integral
—————————
Calcular a derivada da função
Olhando para y como uma função composta:
usamos a Regra da Cadeia para derivar:
Agora, use a Regra da Potência:
Agora, substitua de volta para a variável x e você obtém
Bons estudos! :-)
Tags: derivada função composta regra da cadeia raiz quadrada polinômio quadrático cálculo diferencial integral
nataliaarago2:
Obrigado amigo, ajudou muito na duvida
Perguntas interessantes