Matemática, perguntado por bloomy, 4 meses atrás

d) Resolva a seguinte inequação:

x^{2} - x - 160 \leq 0

Soluções para a tarefa

Respondido por MythPi
23

Resposta correta:

 \space\space{\because\space\space\boxed{\boxed{\begin{array}{lr}\red{\space S = \{ \frac{ -  \sqrt{641} + 1 }{2}  \leqslant x \leqslant  \frac{ \sqrt{641} + 1 }{2} \}\space}\end{array}}}}

 \bf\large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad }}

   ~

\space\space\space\space\space\huge\mid{\boxed{\bf{\blue{Matem\acute{a}tica}}}\mid}

   ~

Solução passo a passo

   ~

 \large\underline{ \overline{\boxed{\begin{array}{clr}\\ \displaystyle{ ~ x^{2}  - x - 160 \leqslant 0 ~ }\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{array}}}}

  ~

Por equação quadrática  \sf { ax^{2}  + bx + c = 0 }

 \large\gray{\space\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned} x^{2}  - x - 160  =  0  \end{aligned}$}

~

Utilizando a fórmula de Bhaskara:  \large\sf {x =  \frac{ - b \pm \sqrt{b^{2}  - 4 \: \cdot  \: a \: \cdot  \: c} }{2 \: \cdot  \: a}}

 ~

 \large{\gray{\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned} x =  \frac{1 \pm \sqrt{( -1 )^{2} - 4  \: \cdot  \: 1( - 160)} }{1\: \cdot  \:2}   \end{aligned}$} }

 ~

Resolvendo

 \large\gray{\space\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned} x =   \frac{ 1 \: \pm \: \sqrt{641} }{2}  \end{aligned}$}\left\{\begin{array}{ll}\displaystyle{ x =  \frac{1 \pm \sqrt{( -1 )^{2} - 4  \: \cdot  \: 1( - 160)} }{1\: \cdot  \:2} } \\ \\ \displaystyle{  x =  \frac{1 \pm \sqrt{( -1 )^{2} - 4  \: \cdot  \: 1( - 160)} }{2}}\\ \\ \displaystyle{  x =  \frac{1 \pm \sqrt{( -1 )^{2} - 4  \: ( - 160)} }{2}} \\ \\ \displaystyle{  x =  \frac{1 \pm  \sqrt{1 - 4  \: ( - 160)} }{2}} \\ \\ \displaystyle{  x =  \frac{1 \pm  \sqrt{1  +  640} }{2}}\\ \\~~\displaystyle{= x =   \frac{ 1 \: \pm \: \sqrt{641} }{2} ~~} \\ \end{array}\right.

 ~

 \large{\gray{\space\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned} =  \frac{ -  \sqrt{641} + 1 }{2}  \leqslant x \leqslant  \frac{ \sqrt{641} + 1 }{2}  \end{aligned}$} }

 ~

Notas:

  •  \boxed{\displaystyle\text{$\begin{aligned} \: \: \sf{ ax^{2}  + bx + c = 0  \: \rightarrow \: x =  \frac{ - b  \: \pm \:  \sqrt{b^{2}  - 4ac}}{2a} } \: \:\end{aligned}$}}

   ~

Solução:

 ~~{\therefore~~\boxed{\boxed{\begin{array}{lr}\red{~S = \{ \frac{  -  \sqrt{641} + 1 }{2}  \leqslant x \leqslant  \frac{ \sqrt{641} + 1 }{2} \} ~}\end{array}}}}

   ~

  \:  \:  \: \text{\underline{Att.}}

 {\huge\boxed { {\bf{M}}}\boxed { \red {\bf{y}}} \boxed { \blue {\bf{t}}} \boxed { \gray{\bf{h}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{P}}} \boxed {\bf{i}}}

   ~

 {~~\vdots~~~\large\boxed {\boxed{17:42h}~22.10.21}}

 \bf\large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad }}

   ~

Veja mais em:

\orange{\square}https://brainly.com.br/tarefa/20622707

\orange{\square}https://brainly.com.br/tarefa/31715788

   ~

Anexos:
Perguntas interessantes