crie três questões sobre a soma da medida dos ângulos externos
Soluções para a tarefa
Independentemente de qual seja o polígono convexo e sua quantidade de lados, ou do fato de todos os lados possuírem medidas diferentes, cada ângulo interno (Si), somado ao seu ângulo externo adjacente (Ai), deve ter como resultado 180°:
Si + Ai = 180°
Seja S a soma de todos os ângulos internos e A a soma de todos os ângulos externos, em um polígono de n lados, temos também n ângulos internos e n ângulos externos. Assim:
S + A = 180·n
A soma dos ângulos internos nós já conhecemos, pois ela é obtida pela expressão: S = (n – 2)180. Substituindo S por essa expressão na equação anterior, temos:
S + A = 180n
(n – 2)180 + A = 180n
180n – 360 + A = 180n
Como queremos descobrir a soma dos ângulos externos de um polígono, isolaremos a incógnita A no primeiro membro:
180n – 360 + A = 180n
A = 180n + 360 – 180n
A = 360°
Portanto, fica demonstrado que a soma dos ângulos externos de um polígono convexo é sempre igual a 360°.