Copie cada propriedade da potência e dê três exemplos de cada um.
Soluções para a tarefa
As quatro operações matemáticas básicas são adição, subtração, multiplicação e divisão, entretanto, não são as únicas operações existentes. Quando o produto envolve fatores que são todos iguais, é possível definir uma nova operação matemática: a potenciação. Como tudo na Matemática, com uma nova definição, é possível também encontrar novas propriedades exclusivas a ela.
Vale relembrar, de forma rápida, a definição de potenciação antes de prosseguir com a explicação de suas propriedades.
Definição de potenciação
A potenciação é a operação matemática baseada em um produto, na qual todos os fatores são o mesmo número real. Exemplo:
7·7·7·7
O número real que se repete é chamado de base da potência, e a quantidade de vezes que ele repete-se é denominada expoente da potência. É possível reescrever uma potência com notação própria, colocando o expoente à direita da base, como um índice superior. Veja o exemplo anterior escrito na notação de potência:
7·7·7·7 = 74
De forma geral, as potências são definidas como:
an = a·a·a·...·a, em que a repete-se n vezes.
Propriedades da potenciação
A potenciação possui oito propriedades mais importantes, com as quais é possível resolver quase todos os problemas envolvendo essa operação:
1 – Expoente zero
Sempre que o expoente de uma potência for zero, independentemente do valor de sua base, o resultado dessa potência será igual a 1. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:
a0 = 1
2 – Expoente unitário
Sempre que o expoente de uma potência for 1, independentemente do valor de sua base, o resultado dessa potência sempre será igual ao valor da base. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:
a1 = a
3 – Produto de potências de mesma base
O resultado de um produto entre duas potências de bases iguais será uma terceira potência, na qual a base será igual às bases das potências que foram multiplicadas, e o expoente será igual à soma dos expoentes dessas potências.
Matematicamente, se a for pertencente ao conjunto dos números reais, e m e n pertencentes ao conjunto dos números naturais, com a ≠ 0, teremos: