Matemática, perguntado por atilaaow, 5 meses atrás

Considere uma região plana cujo contorno é um trapézio. Nessa região, a medida de comprimento da base menor é de 6 m, a medida de comprimento da base maior é o dobro da medida de comprimento da altura e a medida de área é de 28 cm². Calcule a medida de comprimento da base maior dessa região plana.

Soluções para a tarefa

Respondido por marcleisilva
1

Resposta:

8m

Explicação passo a passo:

O calculo da área do trapézio é dado pela expressão:

A=\frac{(B+b)h}{2}

Temos alguns valores:

A = 28m^{2} \\B=2h\\b=6

Colocando os valores na fórmula, temos:

28=\frac{(2h+6)h}{2}\\56=2h^{2}+6h\\\\2h^{2}+6h-56=0

Uma equação do segundo grau, vamos resolver o valor de "delta":

delta =b^{2} - 4ac=6^{2}-4.2.(-56)=36-8(-56)=36+448=484

Achamos as raízes

x_1=\frac{-b+\sqrt{delta} }{2a} =\frac{-6+\sqrt{484} }{2.2}=\frac{-6+22}{4} =\frac{16}{4} =4

x_2=\frac{-b-\sqrt{delta} }{2a} =\frac{-6-\sqrt{484} }{2.2}=\frac{-6-22}{4} =\frac{-28}{4} =-7

Não existe altura negativa, logo, descartamos "-7" e ficamos com h=4, logo:

B=2h=2.4=8

Se quiser, tire a prova real:

A=\frac{(8+6)4}{2} =\frac{14.4}{2} =\frac{56}{2} =28


hewellynsuamy: muito obrigada
Perguntas interessantes