Considere uma equação do 2°grau da forma x²+ bx + c= 0. A soma das raízes dessa equação é 5/2 e o produto delas é 1.
Os valores dos coeficientes “b”
e “c” dessa equação são:
A)b= –5
e c=1.
B) b= –5/2
e c=1.
C) b=5/2
e c=−1.
D) b=5/2
e c=1.
E) b=5
e c=2.
Soluções para a tarefa
Os valores dos coeficientes "b" e "c" são: b = -5/2 e c = 1 ( letra b)
Para a obtenção das raízes das equações propostas, basta resolver, conhecendo as propriedades de uma equação de segundo grau. É importante a compreensão que há dois tipos de equações: completas e as incompletas, que no caso desse exercício, é do tipo completa, por possuir todos os coeficientes.
Sabe-se que para um função de segundo grau qualquer f(x) = ax² + bx +c ,
As raízes da equação podem ser obtidas por meio da conhecida fórmula de baskhara:
x = (- b ± √b²-4*a*c)/(2*a)
Pode-se inferir que a = 1
Além disso, o enunciado fala que a soma das raízes é 5/2 e o produto é 1.
A soma das raízes(S) é dada por:
S = -b/a
5/2 = -b/1
b = -5/2
O produto das raízes(P) é dado por:
P = c/a
1 = c/1
c = 1
Para mais sobre:
brainly.com.br/tarefa/29503976