Matemática, perguntado por marcellyribeiro83, 4 meses atrás

Considere um triângulo retângulo, cujos ângulos agudos a e b satisfazem à condição cos a = 0,8 e cos b = 0,6 Determine a área desse triângulo, em cm², sabendo que o comprimento da hipotenusa é 5 cm:

Soluções para a tarefa

Respondido por Heber19
1

Resposta: 6cm²

Explicação passo a passo:

Cara, anota isso:

Triângulo retângulo com angulo de cosseno 0,6 e 0,8 os lados vão ser proporcionais ao triângulo de lados 3-4-5...

Se a hipotenusa for 10, então os catetos serão 6 e 8.

Portanto, se este triângulo tem hipotenusa 5, os outros catetos são 3 e 4.

A área de um triângulo retângulo é igual à multiplicação dos catetos dividido por 2:

Area = \frac{cateto1*cateto2}{2} = \frac{3*4}{2} = \frac{12}{2}=6cm^2

Perguntas interessantes