Matemática, perguntado por sandrasommerlatte, 1 ano atrás

Considere um sistema de numeração que seja posicional (semelhantemente ao
sistema indo-arábico), mas com base 4 e que utiliza as letras (símbolos) A, B,
C e D para representar, respectivamente, as quantidades 0, 1, 2 e 3. Sendo
assim, determine as quantidades que estão representadas pelos “números” abaixo:


a)
ABCD;     b) CBA;    c) BB;    
d) CCCC.


 

2.
Represente as seguintes quantidades no sistema de numeração descrito na questão
anterior: 

a)
8;   b) 25;     c) 170;      d) 2.000.

Soluções para a tarefa

Respondido por Celio
3
Olá, Sandra.

A\equiv 0,B\equiv 1,C\equiv 2,D\equiv 3\\\\1.\ a)\ ABCD=0.4^3+1.4^2+2.4^1+3.4^0=0+16+8+3=27

b) CBA=2.4^2+1.4^1+0.4^0=32+4+0=36\\\\
c) BB=1.4^1+1.4^0=4+1=5\\\\    
d) CCCC=2.4^3+2.4^2+2.4^1+2.4^0=128+32+8+2=170


2.\ a)8\\
8:4=2, \text{resto }0\equiv A\\
2:4=0, \text{resto }2\equiv C\Rightarrow 8\equiv CA\text{ (sequ\^encia de baixo para cima)}\\\\
b) 25\\
25:4=6, \text{resto }1\equiv B\\
6:4=1, \text{resto }2\equiv C\\
2:4=0, \text{resto }2\equiv C\Rightarrow 25\equiv CCB\\\\
c) 170\\
170:4=42, \text{resto }2\equiv C\\
42:4=10, \text{resto }2\equiv C\\
10:4=2, \text{resto }2\equiv C\\
2:4=0, \text{resto }2\equiv C\Rightarrow 170\equiv CCCC\\\\

d)\ 2000\\
2000:4=500\text{, resto }0\equiv A\\
500:4=125\text{, resto }0\equiv A\\
125:4=31\text{, resto }1\equiv B\\
31:4=7\text{, resto }3\equiv D\\
7:4=1\text{, resto }3\equiv D\\
1:4=0\text{, resto }1\equiv B\Rightarrow 2000\equiv BDDBAA
Perguntas interessantes