Matemática, perguntado por sophiiiss, 10 meses atrás

Considere sen X= 3/5 sendo 0° < X <90°. Determine:

Anexos:

Soluções para a tarefa

Respondido por adrianoou
4

Resposta:

a)4/5

b)3/4

c)5/3

d)5/4

e)4/3

Explicação passo-a-passo:

Olá, esse é um exercício bem simples de trigonometria.

Como minha professora já dizia:"quem tem seno, tem tudo", pois a partir do seno você consegue descobrir o cosseno, tangente, sec etc...

Para fazer isso você utiliza a relação fundamental da trigonometria. (vou utilizar o "alfa" mas pode ser qualquer letra)

 \sin( \alpha )^{2}  +  \cos( \alpha )^{2}  = 1

Então já podemos substituir o valor de seno que o exercício deu...

(3/5)² + cos (teta)² = 1

16/25 + cos (teta)² = 1

cos (teta)² = 16/25

cos (teta) = 4/5

Resposta da alternativa a

Agora podemos descobrir o valor da tangente pela seguinte fórmula...

 \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \tan( \alpha )

Sendo assim, vamos substituir os valores

 \frac{0.6}{0.8}  =  \tan(teta)

(transformei a fração em número decimal para facilitar os cálculos)

Então após os cálculos podemos descobrir que

Tan (teta) = 3/4

Resposta da alternativa b

Agora vamos para os mais simples, para isso você terá que lembrar o que esses nomes correspondem:

Cossecante= 1/seno

Secante= 1/cosseno

Cotangente= 1/tangente

Sendo assim aí vão as respostas.

c) 5/3

d) 5/4

e) 4/3

Faça os cálculos com calma.

Espero que tenha ajudado :)


sophiiiss: Muito obrigada!!!!
adrianoou: de nadinha!
Perguntas interessantes