Matemática, perguntado por larissagv74681, 11 meses atrás

considere p e q numeros reais nao nulos e nao simetricos. a seguir sao descritas seis afirmacoes envolvendo esses numeros e cada uma delas esta associada a um valor informada entre parenteses. a opcao que representa a soma dos valores referentes as afirmacoes verdadeiras e

Soluções para a tarefa

Respondido por carlaodarosa1
30

Resposta:c

Explicação passo-a-passo:

I) Desenvolvendo o quadrado da soma de dois termos temos:

(p + q) 2 = p2 + 2.p.q + q2, portanto, a afirmação I é falsa

II) Pela propriedade da radiciação da multiplicação de raízes de mesmo índice, a afirmação é verdadeira.

III) Neste caso, como a operação entre os termos é uma soma, não podemos tirar da raiz. Primeiro, precisamos efetuar a potenciação, somar os resultados para depois tirar da raiz. Portanto, essa afirmação também é falsa.

IV) Como entre os termos temos uma soma, não podemos simplificar o q. Para poder fazer a simplificação, é necessário desmembrar a fração:

1 sobre q mais numerador p diagonal para cima risco q sobre denominador diagonal para cima risco q fim da fração igual a 1 sobre q mais p sobre q igual a numerador 1 mais p sobre denominador q fim da fração

Assim, essa alternativa é falsa.

V) Como temos uma soma entre os denominadores, não podemos separar as frações, tendo que resolver primeiro essa soma. Logo, esta afirmação também é falsa.

VI) Escrevendo as frações com um único denominador, temos:

numerador 1 sobre denominador começar estilo mostrar 1 sobre p mais 1 sobre q fim do estilo fim da fração igual a numerador 1 sobre denominador começar estilo mostrar numerador q mais p sobre denominador p. q fim da fração fim do estilo fim da fração

Como temos uma fração de fração, resolvemos repetindo a primeira, passado para multiplicação e invertendo a segunda fração, assim:

numerador p. q sobre denominador p mais q fim da fração, portanto, essa afirmação é verdadeira.

Somando as alternativas corretas, temos: 20 + 60 = 80

Alternativa: c) 80


pablloshampaio16: Ótimo
Perguntas interessantes