Matemática, perguntado por julA1NNAAnd0rasilva, 1 ano atrás

Considere os vetores u=(2,-1,1) e v=(1,1,2). Encontre u.v e determine o ângulo 'teta" entre eles.

Soluções para a tarefa

Respondido por Lukyo
0
\overrightarrow{\mathbf{u}}=(2,\,-1,\,1)~~\text{ e }~~\overrightarrow{\mathbf{v}}=(1,\,1,\,2)


\bullet\;\; Produto escalar:

\overrightarrow{\mathbf{u}}\cdot \overrightarrow{\mathbf{v}}\\\\ =(2,\,-1,\,1)\cdot (1,\,1,\,2)\\\\ =2\cdot 1+(-1)\cdot 1+1\cdot 2\\\\ =2-1+2\\\\ =3


\bullet\;\; Encontrando as normas (módulos) dos vetores:

\|\overrightarrow{\mathbf{u}}\|=\|(2,\,-1,\,1)\|\\\\ =\sqrt{2^2+(-1)^2+1^2}\\\\ =\sqrt{4+1+1}\\\\ =\sqrt{6}\\\\\\
\|\overrightarrow{\mathbf{v}}\|=\|(1,\,1,\,2)\|\\\\ =\sqrt{1^2+1^2+2^2}\\\\ =\sqrt{1+1+4}\\\\ =\sqrt{6}


\bullet\;\; Sendo \theta o ângulo entre os vetores, devemos ter

\overrightarrow{\mathbf{u}}\cdot
 \overrightarrow{\mathbf{v}}=\|\overrightarrow{\mathbf{u}}\|\cdot 
\|\overrightarrow{\mathbf{v}}\|\cdot \cos \theta\\\\
\cos \theta=\dfrac{\overrightarrow{\mathbf{u}}\cdot 
\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{u}}\|\cdot 
\|\overrightarrow{\mathbf{v}}\|}~~~~~~(0^\circ \le \theta \le 
180^\circ)


Substituindo os valores conhecidos, temos

\cos \theta=\dfrac{3}{\sqrt{6}\cdot \sqrt{6}}\\\\\\
\cos \theta=\dfrac{3}{6}\\\\\\
\cos \theta=\dfrac{1}{2}\\\\\\
\theta=\arccos\!\left(\dfrac{1}{2}\right)\\\\\\
\boxed{\begin{array}{c}\theta=60^\circ \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/5835832
Perguntas interessantes