Matemática, perguntado por amandrex123, 1 ano atrás

Considere os conjuntos A = {1,2,3,4} e B = {2,3,4,5,6,7,8} e a relação A em B definida pela formula y = x + 3, onde x pertence a A e y pertence a B. Faça o diagrama que representa essa relação e diga se é uma função ou não. Em caso positivo, determine o domínio, a imagem e o contra domínio.

Soluções para a tarefa

Respondido por viniciushenrique406
21
Antes de analisar a relação nós devemos ter em mente o conjunto A cartesiano B (AXB) formado pelos pares ordenados (x, y) tal que x ∈ A e y ∈ B (o símbolo ∈ significa "pertence ao conjunto").

Em símbolos:

\fbox{$A~X~B=\begin{Bmatrix}(x,~y)|~x\in A~~e~~y\in B\end{Bmatrix}$}

Chamamos de relação (R) de A em B o subconjunto de pares ordenados (x, y) pertencentes ao produto cartesiano A por B, que satisfazem a seguinte relação: para cada x é associado y tal que y = x+3.

Em símbolos:

\fbox{$R=\begin{Bmatrix}(x,~y)\in A~X~B|~y=x+3\end{Bmatrix}$}

Podemos fazer uma análise da relação binária de A em B a partir de um diagrama de flechas, veja a imagem que anexei.

Por definição, para que seja função, deverão ser satisfeitas duas condições:

I) Todo elemento x ∈ A deverá fazer parte de pelo menos um par ordenado (x, y) ∈ R.

II) Para cada elemento x ∈ A deverá existir apenas um elemento y ∈ B associado, tal que (x , y) ∈ R.

Vamos analisar as relações:

Para x = 1 ⇒ y = 1+3 ⇒ y = 4 (Par ordenado: (1, 4) ∈ R)
Para x = 2 ⇒ y = 2+3 ⇒ y = 5 (Par ordenado: (2, 5) ∈ R)
Para x = 3 ⇒ y = 3+3 ⇒ y = 6 (Par ordenado: (3, 6) ∈ R)
Para x = 4 ⇒ y = 3+4 ⇒ y = 7 (Par ordenado: (4, 7) ∈ R)

Note que para todo elemento x ∈ A, sem exceção, existe apenas um elemento y ∈ B, tal que (x, y) ∈ R. Portanto é uma função.

O domínio (D) de uma função é igual ao conjunto de partida da função, nesse caso, igual ao conjunto A. Portanto:

D = {1, 2, 3, 4}

O contradomínio (CD) de uma função é igual ao conjunto chegada da função, nesse caso, igual ao conjunto B.

CD = {2, 3, 4, 5, 6, 7, 8}

A imagem (Im) de uma função, é subconjunto do contradomínio, são os elementos y ∈ B tal que o par ordenado (x, y) ∈ R da função.

Portanto: 

Im = {4, 5, 6, 7}







Anexos:

viniciushenrique406: Caso não consiga visualizar a resposta (ex: [tex][/tex]) tente abrir sua tarefa pelo navegador. Link da tarefa: http://brainly.com.br/tarefa/7865821
Perguntas interessantes