Matemática, perguntado por lauragpimentelp04yzk, 1 ano atrás

considere o vetor u = ( 4,2) determine o valor do seu versor

Soluções para a tarefa

Respondido por solkarped
4

✅ Após resolver os cálculos, concluímos que o versor do referido vetor dado é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \hat{u}= \bigg(\frac{2\sqrt{5}}{5},\,\frac{\sqrt{5}}{5}\bigg)\:\:\:}}\end{gathered}$}

Seja o vetor "v":

          \Large\displaystyle\text{$\begin{gathered} \vec{u} = (4, 2)\end{gathered}$}

O versor de um vetor é o vetor unitário que possui mesma direção e sentido do referido vetor.

           \Large\displaystyle\text{$\begin{gathered} \hat{v} = \frac{\vec{v}}{\parallel\vec{v}\parallel}\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered} = \frac{(4, 2)}{\sqrt{4^{2} + 2^{2}}}\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered} = \frac{(4, 2)}{\sqrt{16 + 4}}\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered} = \frac{(4, 2)}{\sqrt{20}}\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{4}{\sqrt{20}},\,\frac{2}{\sqrt{20}}\bigg)\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{2\sqrt{5}}{5},\,\frac{\sqrt{5}}{5}\bigg)\end{gathered}$}

✅ Portanto, o vetor versor de "v" é:

            \Large\displaystyle\text{$\begin{gathered} \hat{u}= \bigg(\frac{2\sqrt{5}}{5},\,\frac{\sqrt{5}}{5}\bigg)\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/9949307
  2. https://brainly.com.br/tarefa/13271385
  3. https://brainly.com.br/tarefa/9856821
  4. https://brainly.com.br/tarefa/12977023
  5. https://brainly.com.br/tarefa/12929315
  6. https://brainly.com.br/tarefa/20060080

Anexos:
Perguntas interessantes