Considere o valor da expressão
. Determine:
a)
Soluções para a tarefa
Respondido por
0
Olá.
![x-\dfrac{1}{x}=\dfrac{9}{5}\\\\\\\mathsf{x-\dfrac{1}{x}=\dfrac{9}{5}} x-\dfrac{1}{x}=\dfrac{9}{5}\\\\\\\mathsf{x-\dfrac{1}{x}=\dfrac{9}{5}}](https://tex.z-dn.net/?f=x-%5Cdfrac%7B1%7D%7Bx%7D%3D%5Cdfrac%7B9%7D%7B5%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bx-%5Cdfrac%7B1%7D%7Bx%7D%3D%5Cdfrac%7B9%7D%7B5%7D%7D)
![x-x^{-1}=\dfrac{9}{5}\\\\(x-x^{-1})^2=(\dfrac{9}{5})^2\\\\(x^2-2\cdot x\cdot x^{-1}-x^{-2})=\dfrac{81}{25}\\\\x^2-2\cdot\dfrac{x}{x}-x^{-2}=\dfrac{81}{25}\\\\x^2-2-x^{-2}=\dfrac{81}{25}\\\\\boxed{x^2-x^{-2}=\dfrac{81}{25}+2}\ \ \ \mathbf{ou...\ \ \ }\boxed{x^2-\dfrac{1}{x^2}=\dfrac{81}{25}+2} x-x^{-1}=\dfrac{9}{5}\\\\(x-x^{-1})^2=(\dfrac{9}{5})^2\\\\(x^2-2\cdot x\cdot x^{-1}-x^{-2})=\dfrac{81}{25}\\\\x^2-2\cdot\dfrac{x}{x}-x^{-2}=\dfrac{81}{25}\\\\x^2-2-x^{-2}=\dfrac{81}{25}\\\\\boxed{x^2-x^{-2}=\dfrac{81}{25}+2}\ \ \ \mathbf{ou...\ \ \ }\boxed{x^2-\dfrac{1}{x^2}=\dfrac{81}{25}+2}](https://tex.z-dn.net/?f=x-x%5E%7B-1%7D%3D%5Cdfrac%7B9%7D%7B5%7D%5C%5C%5C%5C%28x-x%5E%7B-1%7D%29%5E2%3D%28%5Cdfrac%7B9%7D%7B5%7D%29%5E2%5C%5C%5C%5C%28x%5E2-2%5Ccdot+x%5Ccdot+x%5E%7B-1%7D-x%5E%7B-2%7D%29%3D%5Cdfrac%7B81%7D%7B25%7D%5C%5C%5C%5Cx%5E2-2%5Ccdot%5Cdfrac%7Bx%7D%7Bx%7D-x%5E%7B-2%7D%3D%5Cdfrac%7B81%7D%7B25%7D%5C%5C%5C%5Cx%5E2-2-x%5E%7B-2%7D%3D%5Cdfrac%7B81%7D%7B25%7D%5C%5C%5C%5C%5Cboxed%7Bx%5E2-x%5E%7B-2%7D%3D%5Cdfrac%7B81%7D%7B25%7D%2B2%7D%5C+%5C+%5C+%5Cmathbf%7Bou...%5C+%5C+%5C+%7D%5Cboxed%7Bx%5E2-%5Cdfrac%7B1%7D%7Bx%5E2%7D%3D%5Cdfrac%7B81%7D%7B25%7D%2B2%7D)
![\\x^4 + \dfrac{1}{x^4}=( x^4 + 2 + \dfrac{1}{x^4} \right ) - 2 = ( x^2 + \dfrac{1}{x^2} )^2-2 \\x^4 + \dfrac{1}{x^4}=( x^4 + 2 + \dfrac{1}{x^4} \right ) - 2 = ( x^2 + \dfrac{1}{x^2} )^2-2](https://tex.z-dn.net/?f=%5C%5Cx%5E4+%2B+%5Cdfrac%7B1%7D%7Bx%5E4%7D%3D%28+x%5E4+%2B+2+%2B+%5Cdfrac%7B1%7D%7Bx%5E4%7D+%5Cright+%29+-+2+%3D+%28+x%5E2+%2B+%5Cdfrac%7B1%7D%7Bx%5E2%7D+%29%5E2-2)
![( x^2 + \dfrac{1}{x^2})^2 - 2 = ( \dfrac{131}{25})^2 - 2 =\dfrac{17161}{625} - 2 =\dfrac{17161 - 1250}{625} =\boxed{\dfrac{15911}{625}} ( x^2 + \dfrac{1}{x^2})^2 - 2 = ( \dfrac{131}{25})^2 - 2 =\dfrac{17161}{625} - 2 =\dfrac{17161 - 1250}{625} =\boxed{\dfrac{15911}{625}}](https://tex.z-dn.net/?f=%28+x%5E2+%2B+%5Cdfrac%7B1%7D%7Bx%5E2%7D%29%5E2+-+2+%3D+%28+%5Cdfrac%7B131%7D%7B25%7D%29%5E2+-+2+%3D%5Cdfrac%7B17161%7D%7B625%7D+-+2+%3D%5Cdfrac%7B17161+-+1250%7D%7B625%7D+%3D%5Cboxed%7B%5Cdfrac%7B15911%7D%7B625%7D%7D)
A imagem é pra caso o LaTex falhe.
Qualquer dúvida, deixe nos comentários.
Bons estudos.
A imagem é pra caso o LaTex falhe.
Qualquer dúvida, deixe nos comentários.
Bons estudos.
Anexos:
![](https://pt-static.z-dn.net/files/d13/1081bae20de5330e8da4391f80873632.png)
Perguntas interessantes