Matemática, perguntado por heloizaramos69, 1 ano atrás

Considere o conjunto dos algarismos naturais ímpares:

A = {1, 3, 5, 7, 9}

Com esses algarismos, podemos formar 325 números com algarismos distintos. Observe alguns:

5, 51, 139, 3197, 95713

Utilizando elementos do conjunto A, qual é o total de números com 2 algarismos distintos que podem ser formados?
A- 5
B- 10
C- 15
D- 20
E- 25

Soluções para a tarefa

Respondido por giovanna45621p92y4e
4

*Temos os seguintes números: 1,3,5,7,9. Então temos 5 números.

*Números com 2 algarismos distintos, então não podemos repetir nenhum algarismo. (_ x _)

*Utilizando o princípio fundamental da contagem:

(_ x _)

(5 x 4)

20

*Multiplicamos o 5 (total de números que temos a nossa disposição) por 4(total de números que teremos sem o número que foi utilizado antes).

Ex: Supondo que o primeiro número usado foi o 3 (1 possibilidade em 5 possibilidades), não podemos repeti-lo na casa seguinte, então poderemos usar os números restantes: 1,5,7,9 (4 possibilidades em 5 possibilidades). Cada número é uma possibilidade.

Resposta: Letra D - 20

Bom dia!

Espero ter ajudado.

Perguntas interessantes