Matemática, perguntado por anagabya, 1 ano atrás

considere
log 2= 0,3
log 5= 0,7
log 7 =0,8

determine:
a) log{5} 28=

b) log{8} 14=

Soluções para a tarefa

Respondido por korvo
2
\mathsf{log_5(28)= \dfrac{log(28)}{log(5)} }\\\\
\mathsf{log_5(28)= \dfrac{log(2^2\cdot7)}{log(5)} }\\\\
\mathsf{log_5(28)= \dfrac{log(2)^2+log(7)}{log(5)} }\\\\
\mathsf{log_5(28)= \dfrac{2\cdot log(2)+log(7)}{log(5)} }\\\\
\mathsf{log_5(28)= \dfrac{2\cdot0,3+0,8}{0,7} }\\\\
\mathsf{log_5(28)= \dfrac{0,6+0,8}{0,7} }\\\\
\Large\boxed{\mathsf{log_5(28)=2}}


\mathsf{log_8(14)= \dfrac{log(14)}{log(8)} }\\\\
\mathsf{log_8(14)= \dfrac{log(2\cdot7)}{log(2)^3} }\\\\
\mathsf{log_8(14)= \dfrac{log(2)+log(7)}{3\cdot log(2)} }\\\\
\mathsf{log_8(14)= \dfrac{0,3+0,8}{3\cdot0,3} }\\\\
\Large\boxed{\mathsf{log_8(14)\approx1,2}}
Perguntas interessantes