Matemática, perguntado por ppenetog11, 8 meses atrás

Considere f x = log 2 (na base x) e g x = log 5 (na base x) , calcule o valor de [f(1/128) - g(125)] / 2

Soluções para a tarefa

Respondido por gabrielhiroshi01
7

Explicação passo-a-passo:

Temos as seguintes funções:

f(x)=\log_{x}2

g(x)=\log_{x}5

Calculando f(\frac{1}{128} ):

f(\frac{1}{128} )=\log_{\frac{1}{128} }2=a\\\\\bigg(\dfrac{1}{128}\bigg) ^{a}=2\\\\(2^{-7})^{a} =2^{1}   \\\\2^{-7a} =2^{1}  \\\\\text Igualando\ os\ expoentes:\\\\-7a=1\\\\a=\dfrac{1}{-7} \\\\\boxed{f\bigg(\frac{1}{128}\bigg )=-\dfrac{1}{7} }

Calculando g(125 ):

g(125)=\log_{125}5=b\\\\125^{b}=5\\\\(5^{3})^{b}=5^{1}  \\\\5^{3b}=5^{1}\\\\\text Igualando\ os\ expoentes:\\\\3b=1\\\\b=\dfrac{1}{3}\\\\\boxed{ g(125)=\dfrac{1}{3}}

Calculando o valor da expressão do problema:

\dfrac{f(\frac{1}{128} )-g(125)}{2}=\dfrac{\dfrac{-1}{7}-\dfrac{1}{3}  }{2}  \\\\\dfrac{f(\frac{1}{128} )-g(125)}{2}=\dfrac{\dfrac{-3}{21}-\dfrac{7}{21}  }{2}  \\\\\dfrac{f(\frac{1}{128} )-g(125)}{2}=\dfrac{\dfrac{-10}{21} }{2} \\\\\dfrac{f(\frac{1}{128} )-g(125)}{2}=\dfrac{-10  }{21.2}   \\\\\boxed{\boxed{\dfrac{f(\frac{1}{128} )-g(125)}{2}=\dfrac{-5 }{21}  }}


ppenetog11: valeu
gabrielhiroshi01: de nada :)
Respondido por marcelo7197
5

Explicação passo-a-passo:

Estudo das funções

Dada as funções :

 \sf{ f(x)~=~\log_{x}2 ~~e~g(x) = \log_{x}5 } \\

Determinar: \sf{ \dfrac{ f\Big(\frac{1}{128}\Big) - g(125) }{2} } \\

  • Primeiro vamos achar a \sf{f\Big(\dfrac{1}{128}\Big) } \\.

 \iff \sf{ f\Big( \dfrac{1}{128}\Big)~=~ \log_{\frac{1}{128}}2 } \\

 \iff \sf{ f\Big( \dfrac{1}{128}\Big)~=~ \log_{2^{-7}}2 } \\

 \iff \sf{ f\Big( \dfrac{1}{128}\Big)~=~ -\dfrac{1}{7}\log_{2}2 ~=~ -\dfrac{1}{7}*1 } \\

\iff ~~~ \boxed{ \sf{ f\Big( \dfrac{1}{128}\Big)~=~ -\dfrac{1}{7} } } \\

  • Agora vamos achar a g(125)

 \iff \sf{ g(125) ~=~ \log_{125}5 } \\

 \iff \sf{ g(125) ~=~ \log_{5^3}5 } \\

 \iff \sf{ g(125) ~=~ \dfrac{1}{3}\log_{5}5 ~=~\dfrac{1}{3}*1 } \\

 \iff ~~~\boxed{ \sf{ g(125)~=~ \dfrac{1}{3} } } \\

  • Então vamos ter que :

\iff \sf{ \dfrac{ f\Big(\frac{1}{128}\Big) - g(125) }{2} ~=~ \dfrac{ -\frac{1}{7} - \frac{1}{3} }{2} } \\

\iff \sf{ \dfrac{ f\Big(\frac{1}{128}\Big) - g(125) }{2}~=~ \dfrac{ \frac{-3 - 7 }{7*3} }{2} } \\

\iff \sf{ \dfrac{ f\Big(\frac{1}{128}\Big) - g(125) }{2}~=~ \dfrac{ -\frac{10}{21} }{2}~=~-\dfrac{10}{21}*\dfrac{1}{2} } \\

\green{ \iff \boxed{ \sf{ \dfrac{ f\Big(\frac{1}{128}\Big) - g(125) }{2}~=~ - \dfrac{5}{21}  } \sf{ \longleftarrow Resposta } } } \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Espero ter ajudado bastante!)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Anexos:
Perguntas interessantes