Considere esta sequencia de figuras:
na figura 1, há 1 triangulo
na figura 2, o numero de triangulos menores é 4
na figura 3, o numero de triangulos menores é 16 e assim por diante
prosseguindo essa construçao de figuras, teremos quantos triangulos menores na ifigura 7?
me ajudem com conta, desde já obg....
Soluções para a tarefa
Na Figura 5,Há 256
Na Figura 6, 1024
Na 7a,4096.
A Razão é 4.
Teremos 4096 triângulos menores na figura 7.
Observe que a sequência (1, 4, 16, ...) é uma progressão geométrica de razão 4, porque 4/1 = 16/4 = 4.
O termo geral de uma progressão geométrica é definido por aₙ = a₁.qⁿ⁻¹, sendo:
- a₁ = primeiro termo
- q = razão
- n = quantidade de termos.
O primeiro termo da progressão geométrica é 1. Logo, a₁ = 1. Como vimos, a razão é igual a 4. Então, q = 4.
Como queremos saber qual é o sétimo termo da sequência, então devemos considerar n = 7.
Substituindo esses dados na fórmula do termo geral, obtemos:
a₇ = 1.4⁷⁻¹
a₇ = 4⁶
a₇ = 4096.
Portanto, na figura 7 teremos 4096 triângulos.
Outra forma de resolver
Se na figura 3 existem 16 triângulos, então:
Figura 4 → 16.4 = 64
Figura 5 → 64.4 = 256
Figura 6 → 256.4 = 1024
Figura 7 → 1024.4 = 4096 triângulos.
Para mais informações sobre progressão geométrica: https://brainly.com.br/tarefa/17887775