Matemática, perguntado por SoloqVrauEOQ, 1 ano atrás

Considere as funções F e G de R em R tais que f(x)=3x+1 e g(x)=x-2
Determine:
a) g[f(1)]
b) g[f(2)]
c) g[f(x)]
d) f[g(1)]
e) f[g(2)]
f) f[g(x)]

Soluções para a tarefa

Respondido por Lukyo
3
f(x)=3x+1~~\text{ e }~~g(x)=x-2.

a) g(f(1)):

f(1)=3\cdot 1+1=4\\\\\\ \therefore~~g[f(1)]=g(4)\\\\ g[f(1)]=4-2\\\\ \boxed{\begin{array}{c}g[f(1)]=2 \end{array}}


b) g[f(2)]:

f(2)=3\cdot 2+1=7\\\\\\ \therefore~~g[f(2)]=g(7)\\\\ g[f(2)]=7-2\\\\ \boxed{\begin{array}{c}g[f(2)]=5 \end{array}}


c) Se g(x)=x-2\,, então

g[f(x)]=f(x)-2\\\\ g[f(x)]=(3x+1)-2\\\\ g[f(x)]=3x+1-2\\\\ \boxed{\begin{array}{c}g[f(x)]=3x-1 \end{array}}


d) f[g(1)]:

g(1)=1-2=-1\\\\\\ \therefore~~f[g(1)]=f(-1)\\\\ f[g(1)]=3\cdot (-1)+1\\\\ f[g(1)]=-3+1\\\\ \boxed{\begin{array}{c}f[g(1)]=-2 \end{array}}


e) f[g(2)]:

g(2)=2-2=0\\\\\\ \therefore~~f[g(2)]=f(0)\\\\ f[g(2)]=3\cdot 0+1\\\\ f[g(2)]=0+1\\\\ \boxed{\begin{array}{c}f[g(2)]=1 \end{array}}


f) Se f(x)=3x+1\,, então

f[g(x)]=3\,g(x)+1\\\\ f[g(x)]=3\,(x-2)+1\\\\ f[g(x)]=3x-6+1\\\\ \boxed{\begin{array}{c}f[g(x)]=3x-5 \end{array}}


SoloqVrauEOQ: Thanks denovo mano, você é um deus!
Lukyo: Não sou não, amigo.. :-)
Perguntas interessantes