Matemática, perguntado por socorrojesus47, 9 meses atrás

Considere a relação R = {(x,y) E AxB | y=xelevado a 2-x
e os conjuntos A = {1,2,3} e B = {0,1,2,3,4,5,6}.
verifique se é uma função de A e B ? Justifique sua resposta.

Soluções para a tarefa

Respondido por julianeantonia69
1

Resposta:

MANO vou falar a verdade eeee não sei

Respondido por staralanys
1

Resposta:I = {0, 2, 6} C) Como função, todos os elementos do domínio x pertencem a A e devem ter uma representação no anti-domínio. Portanto, a relação R é uma função.

Explicação passo-a-passo:

A = {1,2,3} e B = {1,2,3,4,5,6}

AxB significa: A start group, B end group

Lei de formação: y = x ^ 2-x Y = 1 ^ 2-1 == y = 0 Y = 2 ^ 2-2 == y = 2 Y = 3 ^ 2-3 == y = 6 A) R = {(1,0); (2,2); (3,6)} B) O domínio (D) é o valor de x, então D = {1,2,3}

Por outro lado, a imagem (I) é o elemento de domínio correspondente ao domínio,

então I = {0, 2, 6} C) Como função, todos os elementos do domínio x pertencem a A e devem ter uma representação no anti-domínio. Portanto, a relação R é uma função.

Perguntas interessantes