Matemática, perguntado por marypereira1210, 1 ano atrás

considere a função F(x)=x³/3-x²-8x+26/3 A
) Determine os pontos de máximo ou mínimo da função, se existirem. B
) Especifique qual dos valores encontrados no item anterior é ponto de máximo e qual é ponto de mínimo. C
) Determine o ponto de inflexão do gráfico da função.

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa tarde Mary!

Solução!

f(x)= \dfrac{ x^{3} }{3}- x^{2} -8x+ \dfrac{26}{3}

Vamos derivar a função!

f(x)= \dfrac{ x^{3} }{3}- x^{2} -8x+ \dfrac{26}{3}  \\\\\\
f'(x)= \dfrac{ 3x^{(3-1)} }{3}- 2x^{(2-1)} -8 x^{(1-1)} + \dfrac{26}{3} \\\\\\\\ 
f'(x)= \dfrac{ 3x^{2} }{3}- 2x -8 \\\\\\\\ 
f'(x)= x^{2}- 2x -8 \\\\\\\\

Apos a função derivada encontramos uma equação do segundo grau,vamos determinar suas raizes.

f(x)=0\\\\\\x^{2}- 2x -8=0\\\\\\\\ 
Formula ~~de~~Bhaskara!\\\\\\
x= \dfrac{-b\pm \sqrt{b^{2} -4.a.c} }{2.a}\\\\\\\
x= \dfrac{-(-2)\pm \sqrt{(-2)^{2} -4.1.(-8)} }{2.1}\\\\\\\ 
x= \dfrac{2\pm \sqrt{4+32} }{2}\\\\\\\ 
x= \dfrac{2\pm \sqrt{36} }{2}\\\\\\\ 
x= \dfrac{2\pm 6 }{2}\\\\\\\ 
 x_{1}= \dfrac{2+6}{2} = \dfrac{8}{2} =4\\\\\\\
x_{2}= \dfrac{2-6}{2} = \dfrac{-4}{2} =-2\\\\\\\

\boxed{Raizes:x_{2}= -2~~x_{1}=4}

Conhecendo os valores das raizes,vamos substituir na equação original para determinarmos o ponto de máximo e minimo.

f(x)=y\\\\\\
y= \dfrac{ (-2)^{3} }{3}- (-2)^{2} -8(-2)+ \dfrac{26}{3}\\\\\\\\
y= \dfrac{-8 }{3}- 4 +16+ \dfrac{26}{3}\\\\\\\\
y= \dfrac{-8-12+48+26 }{3}\\\\\\\\
y= \dfrac{-8-12+48+26 }{3}\\\\\\\\
y= \dfrac{-20+74 }{3}\\\\\\\\
y= \dfrac{54 }{3}\\\\\\\\
y=18~~\Rightarrow~~Maximo

y= \dfrac{ (4)^{3} }{3}- (4)^{2} -8(4)+ \dfrac{26}{3}\\\\\\\\
 y= \dfrac{ 64 }{3}- 16 -32+ \dfrac{26}{3}\\\\\\\\
 y= \dfrac{ 64-48-96+26}{3}\\\\\\\\
 y= \dfrac{90-144 }{3}\\\\\\\\
 y= \dfrac{-54}{3}\\\\\\\\
y= -18~~\Rightarrow~~Minimo

\boxed{Ponto_{Maximo}(-2,18)~~Ponto_{Minimo}(4,-18)}

O ponto de inflexão e obtido fazendo a segunda derivada!

f'(x)= x^{2}- 2x -8 \\\\\\\\
f''(x)= 2x^{(2-1)}- 2x -8 \\\\\\\\
f'(x)= 2x-2\\\\\\\\
f'(x)= 0\\\\\\\
2x-2=0\\\\\\
2x=2\\\\\\
x= \dfrac{2}{2} \\\\\\
x=1\\\\\\
  x_{inflex\~ao}=1}\\\\\
\boxed{Ponto~~de_{inflex\~ao}(1,0)}



\boxed{Resposta:A~~Maximo=18~~Minimo=-18}\\\\\\\
\boxed{Resposta:B~~Ponto_{Maximo}(-2,18)~~Ponto_{Minimo}(4,-18) }\\\\\\\
\boxed{Resposta:C~~x_{inflex\~ao}=1 ~~Ponto~~de_{inflex\~ao}(1,0)}}





Boa noite!
Bons estudos!



marypereira1210: boa tardee
Usuário anônimo: Boa tarde!
marypereira1210: *.*
Usuário anônimo: Qulquer dúvida comente aqui!
marypereira1210: okk
Perguntas interessantes