Matemática, perguntado por cristalgiorno38, 3 meses atrás

Considere a função f(x)= X²+10 e determine:
f(x) =  {x}^{2} + 10

A) f(2)
B) f(-7)
C) f(0)
D) f(6)
E) f(-3)​


Usuário anônimo: É só substituir os valores de x

a) f(2) => f(2) = 2² + 10 = 4 + 10 = 14

Soluções para a tarefa

Respondido por Nerd1990
2

Letra A:

f(2) = 2² + 10

f(2) = 4 + 10

f(2) = 14

Letra B:

f(- 7) = - 7² + 10

f(- 7) = 49 + 10

f(- 7) = 59

Letra C:

f(0) = 0² + 10

f(0) = 0 + 10

f(0) = 10

Letra D:

f(6) = 6² + 10

f(6) = 36 + 10

f(6) = 46

Letra E:

f(- 3) = - 3² + 10

f(- 3) = 9 + 10

f(- 3) = 19

Respondido por attard
2

\Large\mathsf\displaystyle{}f\left(x\right) =  {x}^{2}  + 10 \\

Vamos lá

\Large\mathsf\displaystyle{}a)f\left(2\right) =  {2}^{2}  + 10 \\ \Large\mathsf\displaystyle{}f\left(2\right) = 4 + 10 \\ \Large\mathsf\displaystyle{}f\left(2\right) = 14

\Large\mathsf\displaystyle{}b)f\left( - 7\right) =\left( - 7\right)^{2}  + 10 \\ \Large\mathsf\displaystyle{}f\left( - 7\right) = 49 + 10 \\\Large\mathsf\displaystyle{}f \left( - 7\right) = 59

\Large\mathsf\displaystyle{}c)f\left(0\right) =  {0}^{2} + 10 \\ \Large\mathsf\displaystyle{}f \left(0\right) = 0 + 10 \\ \Large\mathsf\displaystyle{}f\left(0\right) = 10

\Large\mathsf\displaystyle{}d)f\left(6\right) =  {6}^{2}  + 10 \\\Large\mathsf\displaystyle{}f\left(6\right)  = 36 + 10 \\ \Large\mathsf\displaystyle{}f\left(6\right) = 46

\Large\mathsf\displaystyle{}e)f\left( - 3\right) =\left( - 3\right) ^{2}  + 10 \\ \Large\mathsf\displaystyle{}f\left( - 3\right) = 9 + 10 \\ \Large\mathsf\displaystyle{}f\left( - 3\right) = 19

\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}}  \blue{\:Estudos}}}}\end{gathered}$}

Anexos:
Perguntas interessantes