Considere a função f dada por f(x,y)=16-x²-y². calcule o volume abaixo da função indicada e acima da região descrita por: R={(r,θ)|0 ≤r≤1;0≤θ≤π/2}. Utilizando coordenadas polares.
Soluções para a tarefa
Respondido por
20
Eu acredito ser ![31 \pi /8 31 \pi /8](https://tex.z-dn.net/?f=31+%5Cpi+%2F8)
Porque como é uma coordenada polar será![\int\limits^ \ \frac{ \pi }2} _0 {(16- r^{2}) r} \, dr dteta \int\limits^ \ \frac{ \pi }2} _0 {(16- r^{2}) r} \, dr dteta](https://tex.z-dn.net/?f=+%5Cint%5Climits%5E+%5C+%5Cfrac%7B+%5Cpi+%7D2%7D+_0+%7B%2816-+r%5E%7B2%7D%29+r%7D+%5C%2C+dr+dteta)
A função transformada é isso aqui f(r cos θ, rsen θ) = 16-(rcos θ)² - (rsenθ)² = 16 - r².
Utilizando o elemento de área apropriado, dA = rdrdθ, tem-se a integral de 0 a π/2 e de 0 a 1.
Portanto pode ser 31π/2.
Caso não seja avisa que está errada. E caso queira a resposta inteira eu ponho depois...
Porque como é uma coordenada polar será
A função transformada é isso aqui f(r cos θ, rsen θ) = 16-(rcos θ)² - (rsenθ)² = 16 - r².
Utilizando o elemento de área apropriado, dA = rdrdθ, tem-se a integral de 0 a π/2 e de 0 a 1.
Portanto pode ser 31π/2.
Caso não seja avisa que está errada. E caso queira a resposta inteira eu ponho depois...
nathaliaolivba:
correto
Respondido por
1
Resposta:
Resposta correta u.v
Explicação passo a passo:
corrigido pelo ava
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Administração,
1 ano atrás
Geografia,
1 ano atrás
Português,
1 ano atrás