considerando o triangulo determine o valor da expressão x ao quadrado + y ao quadrado
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
x²+h²=25
49+h²=y²
h²=y²-49
x²+y²-49=25
x²+y²=25+49
x²+y²=74
Resposta:
Explicação passo-a-passo:
Resposta Questão 1
Para resolver a equação exponencial 32x + 3x + 1 = 18, reescreveremos como produto de potências aquelas potências cujo expoente possui somas.
32x + 3x + 1 = 18
(3x)2 + 3x · 31= 18
Tome y = 3x. Temos a seguinte equação em função de y:
y2 + y · 31= 18
y2 + 3y – 18 = 0
Vamos então resolver essa equação do 2° grau pela fórmula de Bhaskara:
Δ = b² – 4.a.c
Δ = 3² – 4.1.(– 18)
Δ = 9 + 72
Δ = 81
y = – b ± √Δ
2.a
y = – 3 ± √81
2.1
y = – 3 ± 9
2
y1 = – 3 + 9
2
y1 = 6
2
y1 = 3
y2 = – 3 – 9
2
y2 = – 12
2
y2 = – 6
Voltando à equação y = 3x, temos:
Para y1 = 3
3x = y
3x = 3
x1 = 1
Para y2 = – 6
3x = y
3x = – 6
x2 = Ø
Há, portanto, um único valor real para x. A solução da equação é x = 1.
voltar a questão
Resposta Questão 2
Como temos na equação a adição e a subtração de potências, não podemos escrever o primeiro membro como uma só potência, mas podemos desmembrar as potências na maior quantidade possível. Isso corresponde a escrever a equação da seguinte forma:
– 5x – 1 – 5x + 5x + 2 =
– 5x · 5– 1 – 5x + 5x · 52 =
Colocando o termo 5x em evidência, temos:
5x · (– 5– 1 – 1 + 52) =
5x · (– 1/5 – 1 + 25) =
5x = 5
x = 1
Portanto, a solução da equação exponencial – 5x – 1 – 5x + 5x + 2 = 119 é x = 1.
voltar a questão
Resposta Questão 3
A fim de facilitar a resolução da equação exponencial 23x – 2 · 8x + 1 = 4x – 1, vamos reescrever todas as potências na base 2. A saber, temos: 4 = 22 e 8 = 23. Substituindo na equação:
23x – 2 · 8x + 1 = 4x – 1
23x – 2 · (23)x + 1 = (22)x – 1
23x – 2 · 23(x + 1) = 22(x – 1)
23x – 2 · 23x + 3 = 22x – 2
2(3x – 2 ) + (3x + 3) = 22x – 2
Como temos uma equação exponencial que apresenta potências de mesma base nos dois lados da equação, podemos igualar os expoentes:
(3x – 2) + (3x + 3) = 2x – 2
6x + 1 = 2x – 2
6x – 2x = – 2 – 1
4x = – 3
x = – 3
4
|x| = ¾
Portanto, a alternativa que classifica corretamente o resultado da equação é a letra e, que afirma que x é um número de módulo menor do que 1.
voltar a questão
Resposta Questão 4
Para resolver a equação exponencial 22x + 1 – 2x + 4 = 2x + 2 – 32, começaremos separando as potências que apresentam somas no expoente, escrevendo-as como produto de potências.
22x + 1 – 2x + 4 = 2x + 2 – 32
2x · 2x · 21 – 2x · 24 = 2x · 22 – 32
Façamos 2x = y:
y · y · 21 – y · 24 = y · 22 – 32
y2 · 21 – y · 16 = y · 4 – 32
2y2 – 16y – 4y + 32 = 0
2y2 – 20y + 32 = 0
Chegamos a uma equação do 2° grau, que pode ser resolvida fórmula de Bhaskara. A fim de trabalhar com números menores, podemos dividir toda a equação por 2, sem prejuízo no resultado final.
y2 – 10y + 16 = 0
Δ = b² – 4.a.c
Δ = (– 10)² – 4.1.16
Δ = 100 – 64
Δ = 36
y = – b ± √Δ
2.a
y = – (– 10) ± √36
2.1
y = 10 ± 6
2
y1 = 10 + 6
2
y1 = 16
2
y1 = 8
y2 = 10 – 6
2
y2 = 4
2
y2 = 2
Agora que encontramos os possíveis valores de y, podemos resolver a equação exponencial que criamos no início do exercício:
Para y1 = 8
2x = y
2x = 8
2x = 23
x1 = 3
Para y2 = 2
2x = y
2x = 2
2x = 21
x2 = 1
O enunciado pediu a soma das raízes da equação exponencial. Como as raízes são x1 = 3 e x2 = 1, então a soma é x1 + x2 = 3 + 1 = 4. Portanto, a alternativa correta é a letra c.