Considerando, nessa ordem, as equações x² - 5x = 0, x² + 7x = 0 e x² = 10 x podemos afirmar quea) o número 0 não é raiz da última equação.b) cada uma delas tem uma raiz positiva.c) cada uma delas tem uma raiz negativa.d) apenas cada uma delas tem uma raiz negativa.e) apenas uma delas tem uma raiz positiva.
Soluções para a tarefa
x² = 10x
x² -10x=0
x(x-10) = 0
x=0 ou x = 10
---------------------------
b)
x²-5x=0
x(x-5)=0
x= o ou x = 5
x²+7x = 0
x(x+7)=0
x=o ou x= -7
Falso. A segunda equação tem raiz -7 e raiz igual a zero. Zero não representa numero positivo e sim neutro.
-----------------------------------------
c)
A primeira e a ultima tem raiz positiva.
Podemos afirmar que apenas uma delas tem uma raiz negativa.
Observe que as equações x² - 5x = 0, x² + 7x = 0 e x² = 10x são equações do segundo grau incompletas.
Como o termo independente é igual a zero, então, para resolvê-las, colocaremos o x em evidência.
Na equação x² - 5x = 0, temos que as raízes são:
x(x - 5) = 0
x = 0 e x = 5.
Na equação x² + 7x = 0, temos que as raízes são:
x(x + 7) = 0
x = 0 e x = -7.
Na equação x² = 10x, temos que as raízes são:
x² - 10x = 0
x(x - 10) = 0
x = 0 e x = 10.
Vamos analisar cada afirmação.
a) Não é verdade que 0 não é raiz da última equação.
b) Não é verdade que cada uma delas tem uma raiz positiva.
c) Não é verdade que cada uma delas tem uma raiz negativa.
d) É verdade que apenas uma delas tem uma raiz negativa.
e) Não é verdade que apenas uma delas tem uma raiz positiva.
Exercício sobre equação do segundo grau: https://brainly.com.br/tarefa/19608150