Física, perguntado por md2103581, 5 meses atrás

Considerando a função f(x)=1/√x + √x o valor numérico de f'(1) é igual a

Soluções para a tarefa

Respondido por Skoy
19
  • O valor numérico de f'(1) é igual a 0.

Desejamos calcular a derivada da função: \large\displaystyle\text{$\begin{gathered} f(x)=\frac{1}{\sqrt{x} }+\sqrt{x}  \end{gathered}$}, no ponto f'(1).

Para calcular essa derivada, devemos lembrar algumas propriedades, as que iremos utilizar são:

             \large\displaystyle\text{$\begin{gathered}\sqrt[n]{x^m}  =x^{\frac{m}{n}} \end{gathered}$}

             \large\displaystyle\text{$\begin{gathered}a^{-m}=\frac{1}{a^m} \end{gathered}$}

Também é de suma importancia lembrar que a derivada da soma é a soma das derivadas. Logo:

                 \large\displaystyle\text{$\begin{gathered} f'(x)=\left( \frac{1}{\sqrt{x}} \right)' +\left( \sqrt{x} \right)'  \end{gathered}$}

  • Aplicando as propriedades que eu havia dito, temos:

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( \frac{1}{\sqrt{x}} \right)' +\left( \sqrt{x} \right)'  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( \frac{1}{x^{\frac{1}{2}}} \right)' +\left( x^{\frac{1}{2}} \right)'  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( x^{-\frac{1}{2}} \right)' +\left( x^{\frac{1}{2}} \right)'  \end{gathered}$}

Devemos agora aplicar a propriedade de derivação do tombo. Dada por:

               \large\displaystyle\text{$\begin{gathered}f(x) =x^n\Leftrightarrow  f'(x)= n\cdot x^{n - 1}  \end{gathered}$}

Ficando então:

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( x^{-\frac{1}{2}} \right)' +\left( x^{\frac{1}{2}} \right)'  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( -\frac{1}{2}\cdot x^{-\frac{1}{2}-1} \right) +\left( \frac{1}{2}\cdot x^{\frac{1}{2}-1} \right) \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( -\frac{1}{2}\cdot x^{-\frac{3}{2}} \right) +\left( \frac{1}{2}\cdot x^{-\frac{1}{2}} \right)  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=\left( -\frac{1}{2}\cdot \frac{1}{x^{\frac{3}{2}}} \right) +\left( \frac{1}{2}\cdot \frac{1}{x^{\frac{1}{2}}} \right)  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} \therefore f'(x)=\left( -\frac{1}{2\sqrt{x^3}} \right) +\left( \frac{1}{2\sqrt{x}} \right)  \end{gathered}$}

  • Substituindo no ponto f'(1), temos que:

\large\displaystyle\text{$\begin{gathered}  f'(x)=\left( -\frac{1}{2\sqrt{x^3}} \right) +\left( \frac{1}{2\sqrt{x}} \right)  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(1)=\left( -\frac{1}{2\sqrt{(1)^3}} \right) +\left( \frac{1}{2\sqrt{(1)}} \right)  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(1)= \cancel{-\frac{1}{2}} +\cancel{\frac{1}{2}}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} \therefore\boxed{\boxed{\green{f'(1)= 0}}}\ \checkmark\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/47019873
  • brainly.com.br/tarefa/47020686
Anexos:

MuriloAnswersGD: EXCELENTE! '0'
Perguntas interessantes