Considerando a função ⨍ de IR em IR, definida por ⨍(x) = -3x² - 2x +1, calcule o valor numérico de:
(a)⨍(0)
(b)3⨍(-1) + 5⨍(2).
(c), tal que ⨍(x) = 0
Soluções para a tarefa
Respondido por
3
Resposta:
f(x)= -3x²-2x+1
F(0)= -3.0²-2.0+1
!F(0)= -3.0-0+1
F(0)= -0-0+1
F(0)=1
3f(-1)+5f(2)
3(0) + 5(-15)
0+(-125)
-75
F(-1)= -3.(1)²-2.(-1)+1
F(-1)= -3.1+2+1
F(-1)= -3+3
F(-1)=0
F(2)= -3.2²-2.2+1
F(2)= -3.4-4+1
F(2)= -12-4+1
F(2)= -15
F(x)= -3x²-2x+1=0
(b²-4ac)
(-2²)-4.(-3).+1
4+12
16
x = – b ± √∆
2a
x= -(-2)±√16
2.(-3)
x=2±4
-6
2.4=8 -8/6
2.(-4)= -8 +8/6
Perguntas interessantes
Matemática,
8 meses atrás
Português,
8 meses atrás
Português,
8 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás