Consideramos como taxas equivalentes quando duas taxas podem ser aplicadas no mesmo prazo.
Soluções para a tarefa
Respondido por
0
Resposta:
A taxa mensal equivalente é de 3%.
Explicação passo-a-passo:
Para resolver esse exercício utilizamos a fórmula de taxa equivalente, primeiramente vamos extrair as informações:
\begin{gathered}i_t= 9,2727\%\ ao\ trimestre=9,2727\div100=0,092727\\n_t=1\ trimestre = 3\ meses\\n_q=mensal=1\ m\^{e}s\\\\i_q=\left\{(1+i_t)^\left[{\dfrac{n_q}{n_t}\right]\right\}-1\\\\i_{mensal}=\left\{(1+0,092727)^\left[{\dfrac{1}{3}\right]\right\}-1\\\\\\i_{mensal}=\left\{(1,092727)^\left[{\dfrac{1}{3}\right]\right\}-1\\\\\\i_{mensal}=\{\sqrt[3]{1,092727}\}-1\\\\i_{mensal}=1,03-1 = 0,03 = 3\%\\\\\boxed{\bf{i_{mensal}=3\%}}\end{gathered}
Perguntas interessantes
História,
4 meses atrás
Matemática,
4 meses atrás
Pedagogia,
10 meses atrás
Português,
10 meses atrás