Matemática, perguntado por gabrielalcino666, 1 ano atrás

conjunto numérico:
descrever teoria e 5 exemplos:

Soluções para a tarefa

Respondido por camilazoovida
0

Resposta:

Explicação passo-a-passo:

Os conjuntos numéricos reúnem diversos conjuntos cujos elementos são números. Eles são formados pelos números naturais, inteiros, racionais, irracionais e reais. O ramo da matemática que estuda os conjuntos numéricos é a Teoria dos conjuntos.

Confira abaixo as características de cada um deles tais como conceito, símbolo e subconjuntos.

Conjunto dos Números Naturais (N)

O conjunto dos números naturais é representado por N. Ele reúne os números que usamos para contar (incluindo o zero) e é infinito.

Subconjuntos dos Números Naturais

N* = {1, 2, 3, 4, 5..., n, ...} ou N* = N – {0}: conjuntos dos números naturais não-nulos, ou seja, sem o zero.

Np = {0, 2, 4, 6, 8..., 2n, ...}, em que n ∈ N: conjunto dos números naturais pares.

Ni = {1, 3, 5, 7, 9..., 2n+1, ...}, em que n ∈ N: conjunto dos números naturais ímpares.

P = {2, 3, 5, 7, 11, 13, ...}: conjunto dos números naturais primos.

Conjunto dos Números Inteiros (Z)

O conjunto dos números inteiros é representado por Z. Reúne todos os elementos dos números naturais (N) e seus opostos. Assim, conclui-se que N é um subconjunto de Z (N ⊂ Z):

Subconjuntos dos Números Inteiros

Z* = {..., –4, –3, –2, –1, 1, 2, 3, 4, ...} ou Z* = Z – {0}: conjuntos dos números inteiros não-nulos, ou seja, sem o zero.

Z+ = {0, 1, 2, 3, 4, 5, ...}: conjunto dos números inteiros e não-negativos. Note que Z+ = N.

Z*+ = {1, 2, 3, 4, 5, ...}: conjunto dos números inteiros positivos e sem o zero.

Z – = {..., –5, –4, –3, –2, –1, 0}: conjunto dos números inteiros não-positivos.

Z*– = {..., –5, –4, –3, –2, –1}: conjunto dos números inteiros negativos e sem o zero.

Conjunto dos Números Racionais (Q)

O conjunto dos números racionais é representado por Q. Reúne todos os números que podem ser escritos na forma p/q, sendo p e q números inteiros e q≠0.

Q = {0, ±1, ±1/2, ±1/3, ..., ±2, ±2/3, ±2/5, ..., ±3, ±3/2, ±3/4, ...}

Note que todo número inteiro é também número racional. Assim, Z é um subconjunto de Q.

Subconjuntos dos Números Racionais

Q* = subconjunto dos números racionais não-nulos, formado pelos números racionais sem o zero.

Q+ = subconjunto dos números racionais não-negativos, formado pelos números racionais positivos e o zero.

Q*+ = subconjunto dos números racionais positivos, formado pelos números racionais positivos, sem o zero.

Q– = subconjunto dos números racionais não-positivos, formado pelos números racionais negativos e o zero.

Q*– = subconjunto dos números racionais negativos, formado números racionais negativos, sem o zero.

Conjunto dos Números Irracionais (I)

O conjunto dos números irracionais é representado por I. Reúne os números decimais não exatos com uma representação infinita e não periódica, por exemplo: 3,141592... ou 1,203040...

Importante ressaltar que as dízimas periódicas são números racionais e não irracionais. Elas são números decimais que se repetem após a vírgula, por exemplo: 1,3333333...

Conjunto dos Números Reais (R)

O conjunto dos números reais é representado por R. Esse conjunto é formado pelos números racionais (Q) e irracionais (I). Assim, temos que R = Q ∪ I. Além disso, N, Z, Q e I são subconjuntos de R.

Mas, observe que se um número real é racional, ele não pode ser também irracional. Da mesma maneira, se ele é irracional, não é racional.

Subconjuntos dos Números Reais

R*= {x ∈ R│x ≠ 0}: conjunto dos números reais não-nulos.

R+ = {x ∈ R│x ≥ 0}: conjunto dos números reais não-negativos.

R*+ = {x ∈ R│x > 0}: conjunto dos números reais positivos.

R– = {x ∈ R│x ≤ 0}: conjunto dos números reais não-positivos.

R*– = {x ∈ R│x < 0}: conjunto dos números reais negativos.

Perguntas interessantes