conhecendo a medida do raio r=6 dm de um cone equilátero, obtenha: área total, altura e base .
Soluções para a tarefa
Respondido por
116
Olá,
Já que é um cone equilátero
g = 2.r
g = Geratriz
r = Raio
Logo,
g = 2.6
g = 12 dm
A área total de um cone é dada pela expressão:
At = π.r² + π.r.g
At = π.6² + π.6.12
At = 36π + 72π
At = 108π dm²
A altura pode ser calculada pela expressão:
g² = h² + r²
12² = h² + 6²
h² = 144-36
h = √108
h = 6√3 dm
A área da base é calculada pela expressão:
Ab = π.r²
Ab = π.6²
Ab = 36π dm²
Espero que tenha gostado da explicação e bons estudos.
Já que é um cone equilátero
g = 2.r
g = Geratriz
r = Raio
Logo,
g = 2.6
g = 12 dm
A área total de um cone é dada pela expressão:
At = π.r² + π.r.g
At = π.6² + π.6.12
At = 36π + 72π
At = 108π dm²
A altura pode ser calculada pela expressão:
g² = h² + r²
12² = h² + 6²
h² = 144-36
h = √108
h = 6√3 dm
A área da base é calculada pela expressão:
Ab = π.r²
Ab = π.6²
Ab = 36π dm²
Espero que tenha gostado da explicação e bons estudos.
Perguntas interessantes
Biologia,
9 meses atrás
Matemática,
9 meses atrás
Matemática,
9 meses atrás
Física,
1 ano atrás
Biologia,
1 ano atrás
História,
1 ano atrás