Matemática, perguntado por anajuliq, 1 ano atrás

Complete o quadrado para calcular x.

2x^2 + 13x +20 = 0


Quadrado Completo:
(x + )^2 =

​​


Solução:
x= ou x=

ajudem não consigo resolver

Soluções para a tarefa

Respondido por Niiya
0
Quadrado da soma de dois termos:

(a+b)^{2}=a^{2}+2ab+b^{2}
______________________________

2x^{2}+13x+20=0

Reescrevendo 2x² na forma a²:

2x^{2}=(\sqrt{2})^{2}x^{2}=(\sqrt{2}x)^{2}

Reescrevendo 13x, de modo que fique da forma 2ab:

13x=2\cdot(\sqrt{2}x)\cdot\dfrac{13}{2\sqrt{2}}

Com isso, concluímos que b=\dfrac{13}{2\sqrt{2}}

Achando b²:

b^{2}=\left(\dfrac{13}{2\sqrt{2}}\right)^{2}=\dfrac{13^{2}}{\sqrt{8}^{2}}=\dfrac{169}{8}
______________________

Podemos completar o quadrado somando e subtraindo b² na equação:

(\sqrt{2}x)^{2}+2\cdot(\sqrt{2}x)\cdot\dfrac{13}{2\sqrt{2}}+\left(\dfrac{13}{2\sqrt{2}}\right)^{2}-\dfrac{169}{8}+20=0

Finalmente, escrevendo o quadrado da soma:

\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)^{2}+20-\dfrac{169}{8}=0\\\\\\\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)^{2}+\dfrac{160}{8}-\dfrac{169}{8}=0\\\\\\\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)^{2}-\dfrac{9}{8}=0\\\\\\\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)^{2}=\dfrac{9}{8}

Tirando raiz quadrada dos dois lados da equação:

\sqrt{\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)^{2}}=\sqrt{\dfrac{9}{8}}\\\\\\\left|\left(x\sqrt{2}+\dfrac{13}{2\sqrt{2}}\right)\right|=\dfrac{3}{\sqrt{8}}=\dfrac{3}{2\sqrt{2}}\\\\\\\boxed{\boxed{x\sqrt{2}+\dfrac{13}{2\sqrt{2}}=\pm\dfrac{3}{2\sqrt{2}}}}

Então, teremos duas possibilidades:

x\sqrt{2}+\dfrac{13}{2\sqrt{2}}=\dfrac{3}{2\sqrt{2}}\\\\\\x\sqrt{2}=\dfrac{3}{\sqrt{2}}-\dfrac{13}{2\sqrt{2}}\\\\\\x\sqrt{2}=-\dfrac{10}{2\sqrt{2}}\\\\\\x=-\dfrac{5}{\sqrt{2}\cdot\sqrt{2}}\\\\\\\boxed{\boxed{x=-\dfrac{5}{2}}}

Ou:

x\sqrt{2}+\dfrac{13}{2\sqrt{2}}=-\dfrac{3}{2\sqrt{2}}\\\\\\x\sqrt{2}=-\dfrac{3}{2\sqrt{2}}-\dfrac{13}{2\sqrt{2}}\\\\\\x\sqrt{2}=-\dfrac{16}{2\sqrt{2}}\\\\\\x=-\dfrac{8}{\sqrt{2}\cdot\sqrt{2}}\\\\\\x=-\dfrac{8}{2}\\\\\\\boxed{\boxed{x=-4}}
Perguntas interessantes