Como se calcula a soma dos n termos de uma PA ? de dois exemplos.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
A soma dos termos de uma progressão aritmética (PA) pode ser obtida por meio da seguinte fórmula:
Nessa fórmula, Sn representa a soma dos termos, a1 é o primeiro termo e an é o último termo da PA em questão, n é o número de termos que serão somados. Para somar os termos de uma progressão aritmética, basta substituir os valores nessa fórmula.
Exemplos de soma dos termos de uma PA
A seguir, veja dois exemplos de como a fórmula apresentada acima pode ser usada para obter a soma dos termos de uma PA.
→ Exemplo 1
Determine a soma dos termos da seguinte PA: (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40).
Para usar a fórmula dada, observe que:
a1 = 2
an = 40
n = 20
Esse último dado (número de termos) foi obtido contando os termos da PA. Aplicando esses dados na fórmula, teremos:
(EM ANEXO)
Assim, a soma dos termos dessa PA é 420.
Note que essa fórmula só é válida para progressões aritméticas que possuem um número finito de termos. Se a PA for infinita, será necessário limitar o número de termos que serão somados. Quando isso ocorrer, pode ser necessário usar outros conhecimentos sobre PA para se obter o último termo a ser somado.