Matemática, perguntado por leojaime, 1 ano atrás

como resolvo essa questão?
(3-2t)^2

Soluções para a tarefa

Respondido por GuilhermeSll
0
Se eu não me engano é 9-4t
Respondido por sergiojudoca
0
Vamos usar aqui a formula do quadrado da diferença de dois termos ( a^{2} - 2*a*b  +  b^{2} ) onde a = 3 e b = 2t - lembrando não se considera o sinal de menos para esse tipo de calculo- vamos em frente !  3^{2} - 2*3*2t  +  2t^{2} ⇒ 9 + 12t 4t²⇒ vamos agora resolver essa equação do 2°grau lembrando das formula de delta e Bhaskara.  D =[tex] b^{2} - 4*a*c ⇒ D =  12^{2} - 4*4*9 = 144 - 144 = 0 x =  \frac{-b  \sqrt[+/-]{D} }{2*a} x =  ⇒[tex]x =  \frac{-b  \sqrt[+/-]{0} }{2*4} ⇒ \frac{-12 +/- {0} }{8} [/tex] ⇒ vamos determinar as raízes da equação x' e x" x' =  \frac{-12+ {0} }{8} x' =  \frac{-12 }{8} simplificando a fração por 4 fica: x' =  \frac{-3 }{2} ⇒ agora o x": x" = x' =  \frac{-12 - 0 }{8} x" =  \frac{-12}{8} simplificando novamente por 4 fica : x" =  \frac{-3 }{2} Espero ter ajudado ! Nota: Eu usei o D no lugar do símbolo "Δ"
Perguntas interessantes