Como resolvo equações de 1 grau ? explique
Soluções para a tarefa
Respondido por
2
Olá Lavinia,
vou dar 4 exemplos de equações do 1° grau..
![\boxed{1}~~2(x+3)=x-1\\\\
\boxed{2}~~ \dfrac{x}{x+1}= \dfrac{3}{2}\\\\\\ \boxed{3}~~x+\dfrac{x-1}{2}=7\\\\\boxed{4}~~2+\dfrac{x-2}{3}+\dfrac{1}{4}x=x+9 \boxed{1}~~2(x+3)=x-1\\\\
\boxed{2}~~ \dfrac{x}{x+1}= \dfrac{3}{2}\\\\\\ \boxed{3}~~x+\dfrac{x-1}{2}=7\\\\\boxed{4}~~2+\dfrac{x-2}{3}+\dfrac{1}{4}x=x+9](https://tex.z-dn.net/?f=%5Cboxed%7B1%7D%7E%7E2%28x%2B3%29%3Dx-1%5C%5C%5C%5C%0A%5Cboxed%7B2%7D%7E%7E+%5Cdfrac%7Bx%7D%7Bx%2B1%7D%3D+%5Cdfrac%7B3%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%5Cboxed%7B3%7D%7E%7Ex%2B%5Cdfrac%7Bx-1%7D%7B2%7D%3D7%5C%5C%5C%5C%5Cboxed%7B4%7D%7E%7E2%2B%5Cdfrac%7Bx-2%7D%7B3%7D%2B%5Cdfrac%7B1%7D%7B4%7Dx%3Dx%2B9)
Resoluções..
1.
![2(x+3)=x-1~~(aplica~a~distributiva)\\
2x+6=x-1~~(troca~o~sinal~quando~troca~de~membro)\\
2x-x=-1-6\\
x=-7\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-7\}} 2(x+3)=x-1~~(aplica~a~distributiva)\\
2x+6=x-1~~(troca~o~sinal~quando~troca~de~membro)\\
2x-x=-1-6\\
x=-7\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-7\}}](https://tex.z-dn.net/?f=2%28x%2B3%29%3Dx-1%7E%7E%28aplica%7Ea%7Edistributiva%29%5C%5C%0A2x%2B6%3Dx-1%7E%7E%28troca%7Eo%7Esinal%7Equando%7Etroca%7Ede%7Emembro%29%5C%5C%0A2x-x%3D-1-6%5C%5C%0Ax%3D-7%5C%5C%5C%5C%0AU%3D%5Cmathbb%7BZ%7D%5CRightarrow%7E%7E%5Cboxed%7BS%3D%5C%7B-7%5C%7D%7D)
2.
![\dfrac{x}{x+1}= \dfrac{3}{2}~~(multiplica~cruzado)\\\\
2\cdot x=3\cdot(x+1)\\
2x=3x+3\\
2x-3x=3\\
-x=3~~(multiplica~por~-1)\\
x=-3\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-3\}}\\\\\begin{cases}condicao~para~o~denominador~de~uma~fracao~algebrica:\\x+1\neq0\Rightarrow~x\neq-1\end{cases} \dfrac{x}{x+1}= \dfrac{3}{2}~~(multiplica~cruzado)\\\\
2\cdot x=3\cdot(x+1)\\
2x=3x+3\\
2x-3x=3\\
-x=3~~(multiplica~por~-1)\\
x=-3\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-3\}}\\\\\begin{cases}condicao~para~o~denominador~de~uma~fracao~algebrica:\\x+1\neq0\Rightarrow~x\neq-1\end{cases}](https://tex.z-dn.net/?f=+%5Cdfrac%7Bx%7D%7Bx%2B1%7D%3D+%5Cdfrac%7B3%7D%7B2%7D%7E%7E%28multiplica%7Ecruzado%29%5C%5C%5C%5C%0A2%5Ccdot+x%3D3%5Ccdot%28x%2B1%29%5C%5C%0A2x%3D3x%2B3%5C%5C%0A2x-3x%3D3%5C%5C%0A-x%3D3%7E%7E%28multiplica%7Epor%7E-1%29%5C%5C%0Ax%3D-3%5C%5C%5C%5C%0AU%3D%5Cmathbb%7BZ%7D%5CRightarrow%7E%7E%5Cboxed%7BS%3D%5C%7B-3%5C%7D%7D%5C%5C%5C%5C%5Cbegin%7Bcases%7Dcondicao%7Epara%7Eo%7Edenominador%7Ede%7Euma%7Efracao%7Ealgebrica%3A%5C%5Cx%2B1%5Cneq0%5CRightarrow%7Ex%5Cneq-1%5Cend%7Bcases%7D)
3.
![x+ \dfrac{x-1}{2}=7~~(multiplica~os~termos~inteiros~pelo~denominador~2)\\\\
2\cdot x+(x-1)=2\cdot7\\
2x+x-1=14\\
3x=14+1\\
3x=15\\\\
x= \dfrac{15}{3}\\\\
x=5\\\\
U=\mathbb{N}\Rightarrow~~\boxed{S=\{5\}} x+ \dfrac{x-1}{2}=7~~(multiplica~os~termos~inteiros~pelo~denominador~2)\\\\
2\cdot x+(x-1)=2\cdot7\\
2x+x-1=14\\
3x=14+1\\
3x=15\\\\
x= \dfrac{15}{3}\\\\
x=5\\\\
U=\mathbb{N}\Rightarrow~~\boxed{S=\{5\}}](https://tex.z-dn.net/?f=x%2B+%5Cdfrac%7Bx-1%7D%7B2%7D%3D7%7E%7E%28multiplica%7Eos%7Etermos%7Einteiros%7Epelo%7Edenominador%7E2%29%5C%5C%5C%5C%0A2%5Ccdot+x%2B%28x-1%29%3D2%5Ccdot7%5C%5C%0A2x%2Bx-1%3D14%5C%5C%0A3x%3D14%2B1%5C%5C%0A3x%3D15%5C%5C%5C%5C%0Ax%3D+%5Cdfrac%7B15%7D%7B3%7D%5C%5C%5C%5C%0Ax%3D5%5C%5C%5C%5C%0AU%3D%5Cmathbb%7BN%7D%5CRightarrow%7E%7E%5Cboxed%7BS%3D%5C%7B5%5C%7D%7D++)
4.
![2+ \dfrac{x-2}{3}+ \dfrac{1}{4}x=x+9~~(cria~um~denominador~para~2~e~x+9)\\\\
\dfrac{4}{2}+ \dfrac{x-2}{3}+ \dfrac{1}{4}x= \dfrac{3x+27}{3}~~(tira~MMC~de~2,3~e~4)=12\\\\
\dfrac{6\cdot4+4\cdot(x-2)+3\cdot x}{12}= \dfrac{4\cdot(3x+27)}{12}(nesta~parte~divida~o~denomi-\\\\
comum~pelos~antigos~denominadores,~e~multiplique~pelos~numera-\\
dores~correspondentes~e~cancele~o~denominador)..\\\\
24+8x-8+3x=12x+108\\
8x+3x-12x=108-24+8\\
-x=92~~(multiplica~por~-1)\\\\
x=-92\\\\
\boxed{S=\{-92\}} 2+ \dfrac{x-2}{3}+ \dfrac{1}{4}x=x+9~~(cria~um~denominador~para~2~e~x+9)\\\\
\dfrac{4}{2}+ \dfrac{x-2}{3}+ \dfrac{1}{4}x= \dfrac{3x+27}{3}~~(tira~MMC~de~2,3~e~4)=12\\\\
\dfrac{6\cdot4+4\cdot(x-2)+3\cdot x}{12}= \dfrac{4\cdot(3x+27)}{12}(nesta~parte~divida~o~denomi-\\\\
comum~pelos~antigos~denominadores,~e~multiplique~pelos~numera-\\
dores~correspondentes~e~cancele~o~denominador)..\\\\
24+8x-8+3x=12x+108\\
8x+3x-12x=108-24+8\\
-x=92~~(multiplica~por~-1)\\\\
x=-92\\\\
\boxed{S=\{-92\}}](https://tex.z-dn.net/?f=2%2B+%5Cdfrac%7Bx-2%7D%7B3%7D%2B+%5Cdfrac%7B1%7D%7B4%7Dx%3Dx%2B9%7E%7E%28cria%7Eum%7Edenominador%7Epara%7E2%7Ee%7Ex%2B9%29%5C%5C%5C%5C%0A+%5Cdfrac%7B4%7D%7B2%7D%2B+%5Cdfrac%7Bx-2%7D%7B3%7D%2B+%5Cdfrac%7B1%7D%7B4%7Dx%3D+%5Cdfrac%7B3x%2B27%7D%7B3%7D%7E%7E%28tira%7EMMC%7Ede%7E2%2C3%7Ee%7E4%29%3D12%5C%5C%5C%5C%0A+%5Cdfrac%7B6%5Ccdot4%2B4%5Ccdot%28x-2%29%2B3%5Ccdot+x%7D%7B12%7D%3D+%5Cdfrac%7B4%5Ccdot%283x%2B27%29%7D%7B12%7D%28nesta%7Eparte%7Edivida%7Eo%7Edenomi-%5C%5C%5C%5C%0Acomum%7Epelos%7Eantigos%7Edenominadores%2C%7Ee%7Emultiplique%7Epelos%7Enumera-%5C%5C%0Adores%7Ecorrespondentes%7Ee%7Ecancele%7Eo%7Edenominador%29..%5C%5C%5C%5C%0A24%2B8x-8%2B3x%3D12x%2B108%5C%5C%0A8x%2B3x-12x%3D108-24%2B8%5C%5C%0A-x%3D92%7E%7E%28multiplica%7Epor%7E-1%29%5C%5C%5C%5C%0Ax%3D-92%5C%5C%5C%5C%0A%5Cboxed%7BS%3D%5C%7B-92%5C%7D%7D++++++++)
Espero ter ajudado e tenha ótimos estudos ;D
vou dar 4 exemplos de equações do 1° grau..
Resoluções..
1.
2.
3.
4.
Espero ter ajudado e tenha ótimos estudos ;D
korvo:
12 ANOS
Perguntas interessantes
Ed. Física,
1 ano atrás
Biologia,
1 ano atrás
Física,
1 ano atrás
Ed. Moral,
1 ano atrás
Matemática,
1 ano atrás