Matemática, perguntado por LaviniaKauane89, 1 ano atrás

Como resolvo equações de 1 grau ? explique

Soluções para a tarefa

Respondido por korvo
2
Olá Lavinia,

vou dar 4 exemplos de equações do 1° grau..

\boxed{1}~~2(x+3)=x-1\\\\
\boxed{2}~~ \dfrac{x}{x+1}= \dfrac{3}{2}\\\\\\ \boxed{3}~~x+\dfrac{x-1}{2}=7\\\\\boxed{4}~~2+\dfrac{x-2}{3}+\dfrac{1}{4}x=x+9

Resoluções..

1.

2(x+3)=x-1~~(aplica~a~distributiva)\\
2x+6=x-1~~(troca~o~sinal~quando~troca~de~membro)\\
2x-x=-1-6\\
x=-7\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-7\}}

2.

 \dfrac{x}{x+1}= \dfrac{3}{2}~~(multiplica~cruzado)\\\\
2\cdot x=3\cdot(x+1)\\
2x=3x+3\\
2x-3x=3\\
-x=3~~(multiplica~por~-1)\\
x=-3\\\\
U=\mathbb{Z}\Rightarrow~~\boxed{S=\{-3\}}\\\\\begin{cases}condicao~para~o~denominador~de~uma~fracao~algebrica:\\x+1\neq0\Rightarrow~x\neq-1\end{cases}


3.

x+ \dfrac{x-1}{2}=7~~(multiplica~os~termos~inteiros~pelo~denominador~2)\\\\
2\cdot x+(x-1)=2\cdot7\\
2x+x-1=14\\
3x=14+1\\
3x=15\\\\
x= \dfrac{15}{3}\\\\
x=5\\\\
U=\mathbb{N}\Rightarrow~~\boxed{S=\{5\}}


4.

2+ \dfrac{x-2}{3}+ \dfrac{1}{4}x=x+9~~(cria~um~denominador~para~2~e~x+9)\\\\
 \dfrac{4}{2}+ \dfrac{x-2}{3}+ \dfrac{1}{4}x= \dfrac{3x+27}{3}~~(tira~MMC~de~2,3~e~4)=12\\\\
 \dfrac{6\cdot4+4\cdot(x-2)+3\cdot x}{12}= \dfrac{4\cdot(3x+27)}{12}(nesta~parte~divida~o~denomi-\\\\
comum~pelos~antigos~denominadores,~e~multiplique~pelos~numera-\\
dores~correspondentes~e~cancele~o~denominador)..\\\\
24+8x-8+3x=12x+108\\
8x+3x-12x=108-24+8\\
-x=92~~(multiplica~por~-1)\\\\
x=-92\\\\
\boxed{S=\{-92\}}

Espero ter ajudado e tenha ótimos estudos ;D

korvo: 12 ANOS
LaviniaKauane89: simmm 12 anosss aindaaa
korvo: está em qual série??
LaviniaKauane89: 7 ano
korvo: ah legal
korvo: boa sorte nos estudos
korvo: qualquer coisa to por aqui, tchau
LaviniaKauane89: Obrigado,prazer em te conhecer pela internet kk
korvo: prazer tb bj ;D
LaviniaKauane89: bj thau
Perguntas interessantes