como resolver log de 0,008 na base 25?
Soluções para a tarefa
Respondido por
151
Caro realizei o exercicio conforme anexo.
Anexos:
Respondido por
47
log₂₅ 0,008 = - 3/2
Explicação:
log₂₅ 0,008 = x
Definição de logaritmo:
logₐ b = x ⇔ aˣ = b
Usando esse conceito, temos:
25ˣ = 0,008
Agora, temos que tentar expressar esses dois valores como potências de mesma base.
Sabemos que 25 = 5².
Sabemos que 0,008 = 1/125.
Decompondo 125 em fatores primos, temos:
125 / 5
25 / 5
5 / 5
1
Logo, 125 = 5³
Então, a nossa equação fica:
25ˣ = 0,008
(5²)ˣ = 1/5³
5²ˣ = 5⁻³
Agora, que temos uma igualdade de potências de mesma base, podemos igualar os expoentes.
2x = - 3
x = - 3/2
Pratique mais em:
https://brainly.com.br/tarefa/1395560
Anexos:
Perguntas interessantes
Biologia,
9 meses atrás
Matemática,
9 meses atrás
Biologia,
9 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Contabilidade,
1 ano atrás