Matemática, perguntado por LucassLopes, 1 ano atrás

como resolver esse limite

Anexos:

LucassLopes: sem usar derivada

Soluções para a tarefa

Respondido por Usuário anônimo
1
Boa tarde Lucas!

Solução!
Para resolver o limite basta escreve-lo de forma diferente,com o objetivo de eliminar a indeterminação.

\displaystyle \lim_{x \to 5}  \frac{ \sqrt{x} - \sqrt{5} }{ \sqrt{x+5} - \sqrt{10}}\\\\\\\
 \displaystyle \lim_{x \to 5}  \frac{ \sqrt{x} }{\sqrt{x+5} }+ \frac{- \sqrt{5} }{- \sqrt{10} }\\\\\\\\\ 
\displaystyle \lim_{x \to 5}  \frac{ \sqrt{x} }{\sqrt{x+5} }+ \frac{\sqrt{5} }{ \sqrt{10} }\\\\\\\\\
\displaystyle \lim_{x \to 5} \sqrt{ \frac{ x}{x+5} }+  \sqrt{ \frac{5}{10} }\\\\\\\
Substituindo!\\\\\\\
\displaystyle \lim_{x \to 5} \sqrt{ \frac{5}{5+5} }+  \sqrt{ \frac{5}{10} }\\\\\\\


\displaystyle \lim_{x \to 5} \sqrt{ \frac{5}{10} }+  \sqrt{ \frac{5}{10} }\\\\\\\ 
Simplificando~~ por~~ 5~~as~~frac\~oes !\\\\\\\
\displaystyle \lim_{x \to 5} \sqrt{ \frac{1}{2} }+  \sqrt{ \frac{1}{2} }\\\\\\\
 \displaystyle \lim_{x \to 5}   \frac{1}{ \sqrt{2} }+ \frac{1}{ \sqrt{2} }\\\\\\\
Racionalizando~~os~~denominadores~~fica~~assim.

\displaystyle \lim_{x \to 5}   \frac{1}{ \sqrt{2} }\times  \frac{\sqrt{2}}{\sqrt{2}}  + \frac{\sqrt{2} }{\sqrt{2}} \times \frac{1}{ \sqrt{2} }\\\\\\\
\displaystyle \lim_{x \to 5} \frac{\sqrt{2}}{ \sqrt{4} } + \frac{\sqrt{2}}{ \sqrt{4} }\\\\\\\
\displaystyle \lim_{x \to 5} \frac{\sqrt{2}+ \sqrt{2} }{ \sqrt{4} } \\\\\\\
\displaystyle \lim_{x \to 5} \frac{2(\sqrt{2})}{ 2} \\\\\\\
\displaystyle \lim_{x \to 5} (\sqrt{2})


\boxed{Resposta:~~\displaystyle \lim_{x \to 5} \frac{ \sqrt{x} - \sqrt{5} }{ \sqrt{x+5} - \sqrt{10}}= \sqrt{2}}

Bom dia!
Bons estudos!


Perguntas interessantes