Matemática, perguntado por Rodrigomso, 1 ano atrás

Como resolver essa Inequação do Quociente?
1. . . . . . 2. . . .3
___ + ___ - ___ < 0
x -1.... x- 2.... x - 3


Lukyo: Não é proibido colocar foto. O que não pode é colocar só a foto, sem o texto, tudo bem? Eu vou responder à tarefa.

Soluções para a tarefa

Respondido por Lukyo
2
\large\begin{array}{l} \textsf{Resolver a inequa\c{c}\~ao-quociente}\\\\ \mathsf{\dfrac{1}{x-1}+\dfrac{2}{x-2}-\dfrac{3}{x-3}&lt;0} \end{array}


\large\textsf{Primeiro, reduza as fra\c{c}\~oes do lado esquerdo ao mesmo}\\\textsf{denominador:}

\mathsf{\dfrac{1(x-2)(x-3)}{(x-1)(x-2)(x-3)}+\dfrac{2(x-1)(x-3)}{(x-1)(x-2)(x-3)}-\dfrac{3(x-1)(x-2)}{(x-1)(x-2)(x-3)}&lt;0}\\\\\\ \mathsf{\dfrac{1(x-2)(x-3)+2(x-1)(x-3)-3(x-1)(x-2)}{(x-1)(x-2)(x-3)}&lt;0}\\\\\\ \mathsf{\dfrac{1(x^2-3x-2x+6)+2(x^2-3x-x+3)-3(x^2-2x-x+2)}{(x-1)(x-2)(x-3)}&lt;0}

\large\begin{array}{l} \mathsf{\dfrac{1(x^2-5x+6)+2(x^2-4x+3)-3(x^2-3x+2)}{(x-1)(x-2)(x-3)}&lt;0}\\\\ \mathsf{\dfrac{x^2-5x+6+2x^2-8x+6-3x^2+9x-6}{(x-1)(x-2)(x-3)}&lt;0}\\\\ \mathsf{\dfrac{x^2+2x^2-3x^2-5x-8x+9x+6+6-6}{(x-1)(x-2)(x-3)}&lt;0}\\\\ \mathsf{\dfrac{-4x+6}{(x-1)(x-2)(x-3)}&lt;0}\\\\ \mathsf{\dfrac{-2(2x-3)}{(x-1)(x-2)(x-3)}&lt;0} \end{array}


\large\begin{array}{l} \textsf{Dividindo os dois lados por }\mathsf{(-2),}\textsf{ que \'e negativo, o sentido}\\\textsf{da desigualdade se inverte:}\\\\ \textsf{(o sinal \textless~torna-se \textgreater)}\\\\ \mathsf{\dfrac{2x-3}{(x-1)(x-2)(x-3)}&gt;0\qquad(ii)} \end{array}


\large\begin{array}{l} \textsf{Vamos lembrar que o denominador da 
fra\c{c}\~ao n\~ao pode se}\\\textsf{anular.}\\\\\textsf{Deve-se ter 
necessariamente,}\\\\ \mathsf{x\ne 1~~e~~x\ne 2~~e~~x\ne 3} 
\end{array}


\large\begin{array}{l} \textsf{Agora, analisamos os sinais de cada fator envolvido:}\\\\ \begin{array}{cc} \mathsf{(2x-3)}&amp;\mathsf{\underline{~--}\underset{1}{\circ}\underline{--}\underset{\frac{3}{2}}{\bullet}\underline{++}\underset{2}{\circ}\underline{+++}\underset{3}{\circ}\underline{++~}}\\ \mathsf{(x-1)}&amp;\mathsf{\underline{~--}\underset{1}{\circ}\underline{++}\underset{\frac{3}{2}}{\bullet}\underline{++}\underset{2}{\circ}\underline{+++}\underset{3}{\circ}\underline{++~}}\\ \mathsf{(x-2)}&amp;\mathsf{\underline{~--}\underset{1}{\circ}\underline{--}\underset{\frac{3}{2}}{\bullet}\underline{--}\underset{2}{\circ}\underline{+++}\underset{3}{\circ}\underline{++~}}\\\mathsf{(x-3)}&amp;\mathsf{\underline{~--}\underset{1}{\circ}\underline{--}\underset{\frac{3}{2}}{\bullet}\underline{--}\underset{2}{\circ}\underline{---}\underset{3}{\circ}\underline{++~}}\\\\ \mathsf{\dfrac{2x-3}{(x-1)(x-2)(x-3)}}&amp;\mathsf{\underline{~++}\underset{1}{\circ}\underline{--}\underset{\frac{3}{2}}{\bullet}\underline{++}\underset{2}{\circ}\underline{---}\underset{3}{\circ}\underline{++~}}\end{array} \end{array}


\large\begin{array}{l} \textsf{Queremos que o quociente do lado esquerdo da inequa\c{c}\~ao}\\\textsf{(ii) seja positivo. Ent\~ao, o intervalo de interesse \'e}\\\\ \mathsf{x&lt;1~~ou~~\frac{3}{2}&lt;x&lt;2~~ou~~x&gt;3}\\\\\\ \textsf{Conjunto solu\c{c}\~ao: }\mathsf{S=\left\{x\in\mathbb{R}:~x&lt;1~~ou~~\frac{3}{2}&lt;x&lt;2~~ou~~x&gt;3\right\}}\\\\\\ \textsf{ou usando a nota\c{c}\~ao de intervalos,}\\\\ \mathsf{S=\left]-\infty,\,1\right[\,\cup\,\left]\frac{3}{2},\,2\right[\,\cup\,\left]3,\,+\infty\right[\,.} \end{array}


Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7380878


\large\begin{array}{l} \textsf{D\'uvidas? Comente.}\\\\\\ \textsf{Bons estudos! :-)} \end{array}


Tags: inequação quociente produto algébrica desigualdade sinal álgebra


Rodrigomso: entendi,muito obrigado essa era a minha maior duvida
Lukyo: Por nada. =)
Perguntas interessantes