Matemática, perguntado por suelentavares, 1 ano atrás

como resolver as questoes do equação do segundo grau?


marcusviniciuscury: Quais???
suelentavares: sabe marcus eu tenho duas ultimas provas pra terminar do fundaental e não consigo estudar sozinha vc pode me ajudar?
suelentavares: 7X
suelentavares: 7x=-14x

Soluções para a tarefa

Respondido por giovanaraso
1
Equações de segundo grau : 
ex : 2x² + 6x + 4 = 0 

1º passo : separe por A, B e C.

A = 2 
B = 6
C = 4 

2º passo : começe BHASKARA :) 

A formula de Bhaskara é :
Δ = b²-4.a.c 

então, substitua ! 
Δ= 6² - 4 . 2 . 4

Agora é só começar fazer as contas ! 

Δ = 36 - 8 . 4
Δ = 36 - 32
Δ = 4 

× = __-b +/- √Δ___
               2.A

× =__ -6 +/- √4__
             2. 2

× = ___-6 +/- 2___
               4

×' = ___-6 + 2_____ =   \frac{8}{4} = 2
               4

x'' = __-6-2__=   \frac{-8}{4} = -2 
             4

e você tem o conjunto solução : S = {2, -2} 

Espero ter ajudado :)

suelentavares: obrigada amiga por ter visto a minha duvida e ter se prontificado,pode me add no face ([email protected])
giovanaraso: :) ok vou add !! por nada !
giovanaraso: vish amiga, me add lá, não estou achando você. Meu nome tá como Giovana Louzada Raso !
Respondido por EinsteinBrainly
0

➡➡ Resposta  ⬅ ⬅

➱ O que é uma equação?  

Equação é uma conta matemática que envolve letras ou seja são chamadas incógnitas as mais usadas são X e Y. E possui muitos graus iremos ver a baixo a do segundo grau.

➱ O que é uma equação de segundo grau?  

É uma equação que possui a incógnita (letra) com maior grau igual a 2.

➱ Como fazer uma resolução de equação normal:  

➤ Para resolvermos equações devemos separar os  números com incógnitas que estão na equação para o lado esquerdo do igual.

➤ E devemos passar os números sem incógnitas para o lado direito do igual.

➤ Quando os números estiver do lado errado do igual mudamos o sinal toda vez que mudar de lado.

➱ Como fazer resolução da equação de segundo grau:  

Tem várias formas mas a mais conhecida e mais usada é a forma de Bhaskara, que é uma forma que descobre a equação pelos seus coeficientes. Mas podemos fazer por eliminação das letras também e usando um pouco das regrinhas abaixo.

Regrinhas:  

➢ Números com incógnitas = lado esquerdo do igual .

➢ Números sem incógnitas = lado direito do igual .

➢ Mudando de lado = mude o sinal também.

➱ Como saber se há raízes reais:  

Vendo se o número possui um sinal negativo ou positivo se o número não tiver sinal nenhum ele é considerado positivo.

===========================================================

➡➡ Exemplos ⬅⬅

➱ Equação normal:

3x+4 - 5= 8x-5

3x - 8x = -5 +5

-5x = 0

x= 0/-5

x= 0  

----------------------------------------

Equação na forma de Bhaskara:

-b ± √∆ × 1/2a

∆ = b² - 4ac

x² - 5x + 6

a = 3

b = -8

c = 4

∆ = (-8)² - 4 × 3 × 4

∆ = 64 - 48

∆ = 1

6

-(-5) ± √16 × 1/2

(5 ± 16)/2

x' = (5 + 16)/2

x' = 21/2

x' = 10.5

x" = (5-16)/2  

x" = -11/2

x" = -55

S = (10.5,-55)

----------------------------------------

Somando o produto:

Soma das raízes = -b/a

Produto das raízes = c/a

x² - 4x + 4

-(-4)/1 = 4

4/1 = 4

Pensa em dois números que somados sejam 8 e multiplicados sejam 16. Esses números são: 4 e 4.

S = (4,4)

===========================================================

➡➡ Explicação ⬅⬅

Forma de Bhaskara:

Equação do segundo grau ➱ ax² + bx + y = 0 com a ≠ 0  

Reescrevemos ➱ ax² + bx = -y

Dividindo por algum número no caso da explicação é com a letra a.  

x² + bx/a = -y/a

Fazendo se tornar notável:

x² + 2bx/2a + b²/4a² = -y/a + b²/4a²  

(x + b/2a)² = -4ay + b²/4a²  

x + b/2a = ± √(-4ay + b²)/2a  

x = -b ± √(b² - 4ay) × 1/2a

----------------------------------------

Soma e Produto:

Equação do segundo grau ➱ ax² + bx + c = 0 com a ≠ 0

Raízes são dadas pela essa equação ➱ x = -b ± √(b² - 4ac) × 1/2a

Som as raízes para conseguirmos algum resultado para ficar perto do final da conta ➱  

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

-b + √(b² - 4ay) - b - √(b² - 4ay)/2a

 

Resposta final: -b/a

----------------------------------------

Descobrindo produto:

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

(-b + √(b² - 4ay) )(-b - √(b² - 4ay) × (1/2a)²

(-b)² - ( √(b² - 4ay) )² × 1/4a²

b² - (b² - 4ay) × 1/4a²  

b² - b² + 4ay × 1/4a²

4ay/4a²

y/a

--------------------------------------------------------------------------------

Estude mais equações:

1- brainly.com.br/tarefa/36203446

2- brainly.com.br/tarefa/36384234

Bons Estudos!!

Perguntas interessantes