Matemática, perguntado por higorsilva90, 1 ano atrás

Como resolver a expressão (18+12√2)/(3+2√2) sem saber o valor da √2?

Soluções para a tarefa

Respondido por Usuário anônimo
1

 Boa tarde Higor!

O exercício consiste em racionalizar os denominadores, não há necessidade de saber o valor da raiz.

Primeiro vamos escrever a expressão.

 \frac{18+12\sqrt2}{3+2\sqrt2}

Agora vamos multiplicar o denominador com sinal trocado.

 \frac{18+12\sqrt2}{3+2\sqrt2} x  \frac{3-2\sqrt2}{3-2\sqrt2}

Multiplicando fica assim.

 \frac{54-36\sqrt{2}+36\sqrt{2} -24\sqrt{4}  }{9-6\sqrt{2}+6\sqrt{2} -4\sqrt{4}  }  }

Veja que vamos cancelar as raízes com sinal de positivo e negativo tanto no numerador quanto no denominador ficando.

 \frac{54-24\sqrt{4} }{9-4\sqrt{4} }

Vamo resolver a raiz quadrada de √4=2.

 \frac{54-24.2}{9-4.2}

Finalmente é so multiplicar e simplificar ou dividir quando é possível.

 \frac{54-48}{9-8}

 \frac{6}{1} =6


Boa tarde
Bons estudos


















Perguntas interessantes